Computational Probability (eBook)
XI, 336 Seiten
Springer International Publishing (Verlag)
978-3-319-43323-3 (ISBN)
John Drew is a professor emeritus, retired in 2008 from the Department of Mathematics at The College of William & Mary in Williamsburg, Virginia, U.S.A. He received his BS in mathematics form Case Institute of Technology and his PhD in mathematics from the University of Minnesota. During his academic career he published 25 research papers in linear algebra, operations research, and computational probability.
John Drew is a professor emeritus, retired in 2008 from the Department of Mathematics at The College of William & Mary in Williamsburg, Virginia, U.S.A. He received his BS in mathematics form Case Institute of Technology and his PhD in mathematics from the University of Minnesota. During his academic career he published 25 research papers in linear algebra, operations research, and computational probability.Dr. Diane Evans is a professor in the Mathematics Department at Rose-Hulman Institute of Technology in Terre Haute, U.S.A. She received her BS and MA degrees in mathematics from The Ohio State University and her MS and PhD in operations research and applied science from The College of William and Mary. Diane was named in Princeton Review's 300 Best Professors in America and was selected as one of Microsoft's 365 "Heroes in Education" in 2012. During her 2015 sabbatical, she worked for Minitab creating educational materials for new statistics instructors. Her current research and teaching interests are in probability, statistics, quality control, and Six Sigma. Dr. Andrew Glen is a Professor Emeritus of Operations Research from the United States Military Academy, in West Point, NY. He is currently a visiting professor at The Colorado College in Colorado Springs, Colorado. He is a retired colonel from the US Army, and spend 16 years on faculty at West Point. He has published three books and dozens of scholarly articles, mostly on the subject of computational probability. His research and teaching interests are in computational probability and statistical modeling. Lawrence Leemis is a professor in the Department of Mathematics at The College of William & Mary in Williamsburg, Virginia, U.S.A. He received his BS and MS degrees in mathematics and his PhD in operations research from Purdue University. He has also taught courses at Purdue University, The University of Oklahoma, and Baylor University. He has served as Associate Editor for the IEEE Transactions on Reliability, Book Review Editor for the Journal of Quality Technology, and an Associate Editor for Naval Research Logistics. He has published six books and over 100 research articles, proceedings papers, and book chapters. His research and teaching interests are in reliability, simulation, and computational probability.
Computational Probability.- Maple for APPL.- Data Structures and Simple Algorithms.- Transformations of Random Variables.- Bivariate Transformations of Random Variables.- Products of Random Variables.- Data Structures and Simple Algorithms.- Sums of Independent Discrete Random Variables.- Order Statistics for Random Sampling from Discrete Populations.- Reliability and Survival Analysis.- Symbolic ARMA Model Analysis.- Stochastic Simulation.- Transient Queueing Analysis.- Bayesian Applications.- Other Applications.
Erscheint lt. Verlag | 15.12.2016 |
---|---|
Reihe/Serie | International Series in Operations Research & Management Science | International Series in Operations Research & Management Science |
Zusatzinfo | XI, 336 p. 85 illus., 25 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik ► Statistik | |
Technik | |
Wirtschaft ► Allgemeines / Lexika | |
Schlagworte | APPL • computational probability • Continuous Random Variables • Discrete Random Variables • Maple • Multicriteria Models • Probability Theory • Stochastic Simulation • Survival Analysis • univariate random variables |
ISBN-10 | 3-319-43323-7 / 3319433237 |
ISBN-13 | 978-3-319-43323-3 / 9783319433233 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 4,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich