Einführung in die numerische Berechnung von Finanz-Derivaten
Springer Berlin (Verlag)
978-3-540-66889-3 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
1 Grundlagen.- 1.1 Optionen.- 1.2 Partielle Differentialgleichungen.- 1.3 Numerische Methoden.- 1.4 Binomial-Bäume.- 1.5 Stochastische Prozesse.- 1.6 Stochastische Differentialgleichungen.- 1.6.1 Itô-Prozess.- 1.6.2 Anwendung auf Aktien.- 1.7 Itô-Lemma und Folgerungen.- Anmerkungen.- Übungsaufgaben.- 2 Berechnung von Zahlen nach vorgebenen Verteilungen.- 2.1 Pseudo-Zufallszahlen.- 2.1.1 Lineare Kongruenz-Methoden.- 2.1.2 Zufalls-Vektoren.- 2.1.3 Fibonacci-Generatoren.- 2.2 Transformierte Zufallsvariable.- 2.2.1 Inversion.- 2.2.2 Transformation im ?1.- 2.2.3 Transformation im ?n.- 2.3 Normalverteilte Zufallsvariable.- 2.3.1 Methode von Box-Muller (1958).- 2.3.2 Methode von Marsaglia.- 2.3.3 Korrelierte Zufallsvariable.- 2.4 Zahlenfolgen mit niedriger Diskrepanz.- 2.4.1 Monte-Carlo-Integration.- 2.4.2 Diskrepanz.- 2.4.3 Beispiele von Folgen niedriger Diskrepanz.- Anmerkungen.- Übungsaufgaben.- 3 Integration von Stochastischen Differentialgleichungen.- 3.1 Genauigkeit.- 3.2 Stochastische Taylorentwicklungen.- 3.3 Beispiele Numerischer Methoden.- 3.4 Zwischenwerte.- 3.5 Monte-Carlo-Simulation.- Anmerkungen.- Übungsaufgaben.- 4 Black-Scholes und Finite Differenzen.- 4.1 Vorbereitungen.- 4.2 Grundlagen von Differenzenverfahren.- 4.2.1 Differenzen-Approximationen.- 4.2.2 Das Gitter.- 4.2.3 Explizites Verfahren.- 4.2.4 Stabilität.- 4.2.5 Implizite Methode.- 4.3 Crank-Nicolson Verfahren.- 4.4 Randbedingungen.- 4.5 Amerikanische Optionen als freie Randwertprobleme.- 4.5.1 Freie Randwertprobleme.- 4.5.2 Black-Scholes-Ungleichung.- 4.5.3 Hindernis-Probleme.- 4.5.4 Lineare Komplementarität für Amerikanische Put Optionen.- 4.6 Berechnung amerikanischer Optionen.- 4.6.1 Diskretisierung mit Finiten Differenzen.- 4.6.2 Iterative Lösung.- 4.6.3 Algorithmus zur Berechnung von Amerikanischen Optionen.- 4.7 Zur Genauigkeit.- Anmerkungen.- Übungsaufgaben.- 5 Finite-Element-Methoden.- 5.1 Gewichtete Residuen.- 5.1.1 Prinzip der gewichteten Residuen.- 5.1.2 Beispiele für Gewichtsfunktionen.- 5.1.3 Beispiele für Basisfunktionen.- 5.2 Galerkin-Ansatz mit Hutfunktionen.- 5.2.1 Hutfunktionen.- 5.2.2 Eine einfache Anwendung.- 5.3 Anwendung auf Optionen.- 5.4 Fehlerabschätzungen.- 5.4.1 Klassische und schwache Lösungen.- 5.4.2 Approximation auf endlich-dimensionalem Teilraum.- 5.4.3 Lemma von Céa.- Anmerkungen.- Übungsaufgaben.- Anhänge.- A1 Finanz-Derivate und ihr Umfeld.- A2 Wichtiges aus Wahrscheinlichkeit und Statistik.- A3 Die Black-Scholes-Gleichung.- A4 Methoden der Numerik.- A6 Funktionenräume.- Literatur.
Reihe/Serie | Springer-Lehrbuch |
---|---|
Zusatzinfo | XII, 154 S. 2 Abb. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 155 x 235 mm |
Gewicht | 270 g |
Themenwelt | Wirtschaft ► Allgemeines / Lexika |
Schlagworte | Abbildungen • Bankwirtschaft • Derivate • Derivative Finanzinstrumente • Finanzen • Finanzmathematik • Finanzmathematik; Einführungen • Folgen • Funktionen • Modellierung • Monte-Carlo-Simulation • Numerik • Optionen • Statistik • Stochastik • stochastische Differentialgleichungen • stochastische Prozesse • Vektoren • Wahrscheinlichkeit • Wissenschaftlisches Rechnen |
ISBN-10 | 3-540-66889-6 / 3540668896 |
ISBN-13 | 978-3-540-66889-3 / 9783540668893 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich