Analysis of Financial Time Series (eBook)
720 Seiten
Wiley (Verlag)
978-0-470-64455-3 (ISBN)
RUEY S. TSAY, PhD, is H. G. B. Alexander Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. Dr. Tsay has written over 100 published articles in the areas of business and economic forecasting, data analysis, risk management, and process control, and he is the coauthor of A Course in Time Series Analysis (Wiley). Dr. Tsay is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics, the Royal Statistical Society, and Academia Sinica.
1 Financial Time Series and Their Characteristics.
1.1 Asset Returns.
1.2 Distributional Properties of Returns.
1.3 Processes Considered.
2 Linear time series.
2.1 Stationarity.
2.2 Autocorrelation.
2.3 Linear time series.
2.4 Simple AR models.
2.5 Simple MA models.
2.6 Simple ARMA Models.
2.7 Unit-Root Nonstationarity.
2.8 Seasonal Models.
2.9 Regression with Correlated Errors.
2.10 Consistent Covariance Matrix Estimation.
2.11 Long-Memory Models.
3 Volatility models.
3.1 Characteristics of Volatility.
3.2 Structure of a Model.
3.3 Model Building.
3.3.1 Testing for ARCH Effect.
3.4 The ARCH Model.
3.5 The GARCH Model.
3.6 The Integrated GARCH Model.
3.7 The GARCH-M Model.
3.8 The Exponential GARCH Model.
3.9 The Threshold GARCH Model.
3.10 The CHARMA Model.
3.11 Random Coefficient Autoregressive Models.
3.12 The Stochastic Volatility Model.
3.13 The Long-Memory Stochastic Volatility Model.
3.14 Application.
3.15 Alternative Approaches.
3.16 Kurtosis of GARCH Models.
4 Nonlinear Models and Their Applications.
4.1 Nonlinear Models.
4.3 Modeling.
4.4 Forecasting.
4.5 Application.
5 High-Frequency Data Analysis and Market Microstructure.
5.1 Nonsynchronous Trading.
5.2 Bid-Ask Spread.
5.3 Empirical Characteristics of Transactions Data.
5.4 Models for Price Changes.
5.5 Duration Models.
5.6 Nonlinear Duration Models.
5.7 Bivariate Models for Price Change and Duration.
5.8 Application.
6 Continuous-Time Models and Their Applications.
6.1 Options.
6.2 Some Continuous-Time Stochastic Processes.
6.3 Ito's Lemma.
6.4 Distributions of Price and Return.
6.5 Black-Scholes Equation.
6.6 Black-Scholes Pricing Formulas.
6.7 An Extension of Ito's Lemma.
6.8 Stochastic Integral.
6.9 Jump Diffusion Models.
6.10 Estimation of Continuous-Time Models.
7 Extreme Values, Quantiles, and Value at Risk.
7.1 Value at Risk.
7.2 RiskMetrics.
7.3 An Econometric Approach to VaR Calculation.
7.4 Quantile Estimation.
7.5 Extreme Value Theory.
7.6 Extreme Value Approach to VaR.
7.7 A New Approach to VaR.
7.8 The Extremal Index.
8 Multivariate Time Series Analysis and Its Applications.
8.1 Weak Stationarity and Cross-Correlation Matrices.
8.2 Vector Autoregressive Models.
8.3 Vector Moving-Average Models.
8.4 Vector ARMA Models.
8.5 Unit-Root Nonstationarity and Cointegration.
8.6 Cointegrated VAR Models.
8.7 Threshold Cointegration and Arbitrage.
8.8 Pairs Trading.
9 Principal Component Analysis and Factor Models.
9.1 A Factor Model.
9.2 Macroeconometric Factor Models.
9.3 Fundamental Factor Models.
9.4 Principal Component Analysis.
9.5 Statistical Factor Analysis.
9.6 Asymptotic Principal Component Analysis.
10 Multivariate Volatility Models and Their Applications.
10.1 Exponentially Weighted Estimate.
10.2 Some Multivariate GARCH Models.
10.3 Reparameterization.
10.4 GARCH Models for Bivariate Returns.
10.5 Higher Dimensional Volatility Models.
10.6 Factor-Volatility Models.
10.7 Application.
10.8 Multivariate t Distribution.
11 State-Space Models and Kalman Filter.
11.1 Local Trend Model.
11.2 Linear State-Space Models.
11.3 Model Transformation.
11.4 Kalman Filter and Smoothing.
11.5 Missing Values.
11.6 Forecasting.
11.7 Application.
12 Markov Chain Monte Carlo Methods with Applications.
12.1 Markov Chain Simulation.
12.2 Gibbs Sampling.
12.3 Bayesian Inference.
12.4 Alternative Algorithm.
12.5 Linear Regression With Time Series Errors.
12.6 Missing Values and Outliers.
12.7 Stochastic Volatility Models.
12.8 A New Approach to SV Estimation.
12.9 Markov Switching Models.
12.10 Forecasting.
12.11 Other Applications.
"Analysis of financial time series, third edition, is an ideal book for introductory courses on time series at the graduate level and a valuable supplement for statistics courses in time series at the upper-undergraduate level." (Mathematical Reviews, 2011)
"Nevertheless, all in all the book can be a very useful reference for students as well as for professionals." (Zentralblatt MATH, 2011)
"Factor models, an important technique used in quantitative finance, are given a full treatment with macroeconomic factor models and fundamental factor models.
The coverage of the book is comprehensive. It starts from basic time series techniques and finishes with advanced concepts such as state space models and MCMC methods. There is a balance between the theoretical background necessary to appreciate the nuances and the practical aspect of implementation. More importantly it gives insights about what time series models can't address. The book has an excellent supporting website which has all the programs and data sets which helps to internalize the concepts. Finally, teaching professionals should find the solutions manual as a valuable tool to explain concepts and to ensure understanding." (BookPleasures.com, January 2011)
"This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described." (Insurance News Net, 8 December 2010)
Erscheint lt. Verlag | 3.8.2010 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Wirtschaft ► Betriebswirtschaft / Management ► Finanzierung | |
Wirtschaft ► Volkswirtschaftslehre ► Ökonometrie | |
Schlagworte | Finance & Investments • Financial Engineering • Finanztechnik • Finanz- u. Anlagewesen • Finanz- u. Wirtschaftsstatistik • Finanzwirtschaft • Statistics • Statistics for Finance, Business & Economics • Statistik • Time Series • Zeitreihen • Zeitreihenanalyse |
ISBN-10 | 0-470-64455-9 / 0470644559 |
ISBN-13 | 978-0-470-64455-3 / 9780470644553 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich