Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Arsenic in Soil and Groundwater Environment -

Arsenic in Soil and Groundwater Environment (eBook)

Biogeochemical Interactions, Health Effects and Remediation
eBook Download: PDF
2007 | 1. Auflage
684 Seiten
Elsevier Science (Verlag)
978-0-08-052290-6 (ISBN)
Systemvoraussetzungen
110,85 inkl. MwSt
(CHF 108,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
"This volume presents the recent developments in the field of arsenic in soil and groundwater. Arranged into nine sections, the text emphasizes the global occurrences of arsenic in the environment, particularly on its source, pathways, behavior, and effects it has on soils, plants, water, animals, and humans. It also covers the diverse issues of arsenic in the mining environment, arsenic emanating from hydrothermal springs, and the geochemical modeling of arsenic adsorption to oxide surfaces. Finally, the text includes different cost effective removal mechanisms of arsenic from drinking water using natural red earth, solar oxidation, and arsenic oxidation by ferrrate.

Written in simple English, and few technical terms, the book is designed to create interest within the countries with occurrences of arsenic in drinking water with
?an update the current status of knowledge on the dynamics of natural arsenic from the aquifers through groundwater to food chain and efficient techniques for arsenic removal.
?serve as a standard text book for graduate, postgraduate students and researchers in the field of Environmental Sciences and Hydrogeochemistry as well as researchers, environmental scientists and chemists, toxicologists, medical scientists and even for general public seeking an in-depth view of arsenic which had been classed as a carcinogen.
?bring awareness, among administrators, policy makers and company executives, on the problem and to improve the international cooperation"
This volume presents the recent developments in the field of arsenic in soil and groundwater. Arranged into nine sections, the text emphasizes the global occurrences of arsenic in the environment, particularly on its source, pathways, behavior, and effects it has on soils, plants, water, animals, and humans. It also covers the diverse issues of arsenic in the mining environment, arsenic emanating from hydrothermal springs, and the geochemical modeling of arsenic adsorption to oxide surfaces. Finally, the text includes different cost effective removal mechanisms of arsenic from drinking water using natural red earth, solar oxidation, and arsenic oxidation by ferrrate.Written in simple English, and few technical terms, the book is designed to create interest within the countries with occurrences of arsenic in drinking water with *an update the current status of knowledge on the dynamics of natural arsenic from the aquifers through groundwater to food chain and efficient techniques for arsenic removal.*serve as a standard text book for graduate, postgraduate students and researchers in the field of Environmental Sciences and Hydrogeochemistry as well as researchers, environmental scientists and chemists, toxicologists, medical scientists and even for general public seeking an in-depth view of arsenic which had been classed as a carcinogen. *bring awareness, among administrators, policy makers and company executives, on the problem and to improve the international cooperation

Cover 1
Table of Contents 8
Preface 12
About the Editors 16
List of Contributors 24
Section I: Introduction 32
Chapter 1. Arsenic in soil and groundwater: an overview 34
Abstract 34
1.1 Introduction 35
1.2 Occurrence, distribution, and sources of As 36
1.2.1 Occurrence and distribution 36
1.2.2 Sources of As in soils and groundwater 38
1.2.2.1 Natural sources 39
1.2.2.2 Transport and partitioning of As from natural sources 39
1.2.3 Anthropogenic sources 43
1.2.3.1 Industrial As transport and partitioning 44
1.3 Geogenic As in groundwater and soils: a brief overview 47
1.3.1 Distribution and chemodynamics of As in groundwater 50
1.4 Accumulation and behavior of As in soils 59
1.5 Bioaccumulation of As in plants and crops 60
1.5.1 Arsenic in crops 60
1.5.2 Phytoremediation of As-contaminated soils 62
1.6 Speciation and behavior of As in contaminated sites 63
1.7 Biogeochemical Controls on As mobilization 65
1.8 Health risks associated with chronic exposure to As in groundwater 66
1.8.1 Impact of high As ingestion 68
1.8.1.1 Social problem 69
1.8.2 Treatment 70
1.9 Removal of As from drinking water 70
1.9.1 Conventional technique 71
1.9.2 Other established and emerging arsenic removal method 71
1.9.2.1 Pond Sand Filters (PSFs) 72
1.9.2.2 Activated alumina filter (ALCAN filter) 72
1.9.2.3 Bishuddhya filter 73
1.9.2.4 Low cost arsenic removal 73
1.9.2.5 Photocatalytic methods 73
1.10 Conclusions 74
References 75
Section II: Arsenic in Groundwater: Global Occurrences 92
Chapter 2. Trends in arsenic concentration at tubewells in Bangladesh: conceptual models, numerical models, and monitoring proxies 94
Abstract 94
2.1 Introduction 94
2.2 The hydrogeological context of As occurrence 95
2.2.1 A conceptual model of As in the aquifer 97
2.3 Predicting As in tubewell discharge 99
2.3.1 Modelling As at shallow HTWs 100
2.3.2 Modelling As at DTWs 101
2.4 Evidence for changing As concentration at tubewells 104
2.4.1 Arsenic concentration and tubewell age in Bangladesh 104
2.4.2 Arsenic concentration and tubewell age at village scale 105
2.4.3 Time-series monitoring of As concentration 107
2.4.4 Isotopic indication of vertical leakage 108
2.5 Discussion 110
2.6 Future directions 111
Acknowledgements 112
References 112
Chapter 3. Source identification for groundwater arsenic in the Verde Valley, Central Arizona, USA 116
Abstract 116
3.1 Introduction 116
3.2 Geology of Verde Valley 117
3.2.1 Verde Formation 121
3.2.2 Precambrian rocks 121
3.2.3 Montezuma Well 122
3.2.4 Verde Hot Springs 122
3.2.5 Chemical composition of Verde Valley groundwater 123
3.2.6 Local channelization of groundwater 123
3.3 Experimental 123
3.3.1 Cation and anion analyses 123
3.3.1.1 ICP–MS analysis 124
3.4 Results and discussion 124
3.5 Future directions 129
Acknowledgments 129
References 129
Chapter 4. Natural arsenic in groundwater and alkaline lakes at the upper Paraguay basin, Pantanal, Brazil 132
Abstract 132
4.1 Introduction 133
4.2 Regional setting 135
4.3 Materials and methods 137
4.3.1 Fieldwork 137
4.3.2 Laboratory work 139
4.3.2.1 Soil samples 139
4.3.2.2 Water samples 139
4.3.3 Statistical treatment 140
4.3.4 Concentration diagrams 140
4.3.5 Thermodynamic modelling 140
4.3.6 Residual alkalinity 141
4.4 Results 142
4.4.1 Soil and water table 142
4.4.2 Chemical variability 143
4.5 Discussion 150
4.5.1 Soil system 150
4.5.2 Water table fluctuations 151
4.5.3 Chemistry of major elements 151
4.5.4 Influences on As 153
4.6 Future directions 154
Acknowledgements 155
References 155
Chapter 5. Arsenic in surface- and groundwater in central parts of the Balkan Peninsula (SE Europe) 158
Abstract 158
5.1 Introduction 158
5.2 Arsenic in the environment 159
5.3 Arsenic in natural waters in the CBP 161
5.3.1 Arsenic in surface- and groundwaters 161
5.3.2 Arsenic in mineral, thermal, and thermomineral waters 169
5.3.2.1 Arsenic in MTWs in Serbia 169
5.3.2.2 Arsenic in MTWs in middle-northeast Bosnia 175
5.3.2.3 Geochemistry of As-rich MTWs in CBP 176
5.4 Environmental impacts 177
5.5 Future directions 181
Acknowledgments 182
Acronyms and abbreviations 182
References 182
Section III: Arsenic in Soil Environment 188
Chapter 6. Geochemical modelling of arsenic adsorption to oxide surfaces 190
Abstract 190
6.1 Introduction 191
6.2 Arsenic adsorption mechanisms 192
6.3 Surface complexation modelling of arsenate and arsenite to ferrihydrite and goethite 195
6.3.1 Surface complexation models 195
6.3.2 Strategy for model optimization 198
6.3.3 Modelling arsenate adsorption to ferrihydrite 201
6.3.4 Modelling arsenite adsorption to ferrihydrite 209
6.3.5 Modelling arsenate adsorption to goethite 212
6.3.6 Modelling arsenite adsorption to goethite 218
6.4 Arsenate and arsenite adsorption to Al oxides 218
6.5 Interactions with other anions and cations 220
6.5.1 Interactions with inorganic ions on Fe oxide surfaces – literature evidence 220
6.5.2 Interactions with inorganic ions on ferrihydrite – scenarios using generic parameters 221
6.5.3 Interactions with organic acids 227
6.6 Conclusions 231
Acknowledgements 231
References 231
Chapter 7. Arsenic in the soil environment of central Balkan Peninsula, southeastern Europe: occurrence, geochemistry, and impacts 238
Abstract 238
7.1 Introduction 238
7.2 Basic geology and geochemistry of CBP 240
7.2.1 Geological framework 240
7.2.2 Mineralization and metallogeny 240
7.3 Arsenic in CBP lithosphere: rocks, ores, and soils 242
7.3.1 Arsenic in rocks and ores 242
7.3.2 Arsenic in soils 248
7.4 Arsenic in mining and industrial areas 250
7.4.1 Arsenic in the environment of mining and metallurgical areas 250
7.4.2 Coal-fired power plants 256
7.5 Impact of As on biota 258
7.5.1 Arsenic in mussels along Danube River 258
7.5.2 Soil–plant systems: As in plants 258
7.5.3 Emissions of arsenic-rich aerosols from metallurgical facilities and impacts on wild bees 260
7.6 Conclusions 261
7.7 Future directions 262
Acknowledgments 262
References 263
Chapter 8. Arsenic in soil environments in Albania 268
Abstract 268
8.1 Introduction 268
8.2 Materials and methods 270
8.2.1 Sampling procedure 270
8.2.2 Analytical procedure of soil samples 271
8.2.3 Analytical procedure of stream sediment samples 271
8.2.4 Quality assurance 271
8.3 Arsenic in soils 272
8.3.1 The geology of the area 272
8.3.2 Arsenic in the soils from sulfide ores area 272
8.3.3 Derivation of As from industry 275
8.3.4 Soils of Korca area 276
8.4 Arsenic in the stream sediments of Albanian rivers 278
8.4.1 Study sites 278
8.4.2 Arsenic in stream sediment samples 279
8.5 Conclusions 284
References 285
Chapter 9. Arsenic concentration in selected soils around Abeokuta, southwestern Nigeria 288
Abstract 288
9.1 Introduction 288
9.2 The study area 289
9.3 Materials and methods 291
9.4 Results and discussion 291
9.5 Conclusion 296
Acknowledgments 296
References 296
Chapter 10. Levels of trace metals and sequential extraction of arsenic in topsoil and sand from sandboxes at playgrounds in Oslo, Norway 300
Abstract 300
10.1 Introduction 301
10.2 Multi-elemental sequential extraction 301
10.3 Arsenic in soils 304
10.3.1 Overview 304
10.3.2 Arsenic in impregnated wood 305
10.3.3 Arsenic in organisms 305
10.4 Methods 306
10.4.1 Sampling and sample preparation 306
10.4.2 Dissolution – sequential extraction procedure 306
10.4.3 Dissolution – total concentration procedure 308
10.4.4 Atomic absorption spectrometry 308
10.4.4.1 Graphite furnace (As) 308
10.4.4.2 Graphite furnace (Cd) 309
10.4.4.3 Flame 309
10.5 Results and discussion 309
10.5.1 Acid-soluble concentrations of seven trace elements in topsoil and sandbox samples at 24 playgrounds 309
10.5.2 Sequential extraction of arsenic in topsoil and sandbox samples at 24 playgrounds 314
10.5.3 Sequential extraction of As in all topsoil samples 318
10.6 Summary and conclusions 322
10.6.1 Acid-soluble concentrations of seven trace elements in topsoil and sandbox samples at 24 playgrounds 322
10.6.2 Sequential extraction of As in topsoil and sandbox samples at 24 playgrounds 322
10.6.3 Sequential extraction of arsenic in all topsoil samples 323
Acknowledgements 324
References 324
Section IV: Arsenic in Plants and Crops 328
Chapter 11. Spatial distribution, localization, and speciation of arsenic in the hyperaccumulating Fern Pteris vittata L. 330
Abstract 330
11.1 Introduction 331
11.2 Materials and methods 333
11.2.1 Tissue preparation 333
11.2.2 X-ray mapping 333
11.2.3 X-ray absorption spectroscopy analysis 335
11.3 Results 335
11.3.1 Macro-distribution of As in different organs 335
11.3.2 Micro-distribution of As in the fronds 337
11.3.3 Analysis of xylem sap 337
11.4 Discussion 338
Acknowledgments 341
References 341
Chapter 12. Arsenic accumulation by Talinum cuneifolium – application for phytoremediation of arsenic-contaminated soils of Patancheru, Hyderabad, India 346
Abstract 346
12.1 Introduction 347
12.2 Study area 348
12.3 Materials and methods 349
12.3.1 Experimental design 349
12.3.2 Plant material 352
12.3.3 Collection of As-contaminated soil and characterization 352
12.3.4 Heavy metal analysis 353
12.4 Results and discussion 353
12.4.1 Time dependency studies 353
12.4.2 Dose–response studies 355
12.4.3 Arsenic bioconcentration and translocation factors 355
12.4.4 Fractionation studies 357
12.4.5 Uptake of As in presence of co-metal ions 358
12.4.6 Effect of As uptake in the presence of co-anions and chelators 359
12.4.7 Arsenic uptake from contaminated soils of Patancheru 361
12.5 Conclusions 362
12.6 Future directions 363
Acknowledgments 363
References 364
Chapter 13. Effects of arsenic-contaminated irrigation water, zinc and organic matter on the mobilization of arsenic in soils in relation to rice 370
Abstract 370
13.1 Introduction 370
13.2 Soil and groundwater quality 372
13.2.1 Soil quality 372
13.2.2 Groundwater quality 375
13.3 Nature and characteristics of the soil under study 378
13.4 Experiments on mobilization of As in soils in relation to rice 379
13.5 Results and discussions 380
13.5.1 Arsenic mobilization in soils 381
13.5.1.1 Effect of organic matter 381
13.5.1.2 Effect of zinc and other ions 382
13.5.1.3 Upper toxic limit of As 384
13.5.2 Arsenic accumulation in plants 385
13.5.2.1 Effect of methods of As-contaminated water and zinc 385
13.5.2.2 Arsenic uptake by crops in sequences and build-up in soil 386
13.6 Microbial decontamination of As-contaminated soils through groundwater 387
13.7 Future research directions 390
Acknowledgements 391
References 391
Section V: Arsenic in Contaminated Sites (including Mining Wastes) 394
Chapter 14. Long-Term environmental impact of arsenic-dispersion in Minas Gerais, Brazil 396
Abstract 396
14.1 Introduction 397
14.2 Environmental media and pathways: air, soil, and water 399
14.2.1 Atmospheric pathway 400
14.2.2 Soil pollution 401
14.2.3 Water pathway 405
14.3 Biota as receptors 406
14.3.1 Foodstuff 406
14.3.2 Human urine and hair 407
14.4 Future directions 409
Acknowledgements 411
References 411
Chapter 15. Processes and conditions affecting elevated arsenic concentrations in groundwaters of Tulare Basin, California, USA 414
Abstract 414
15.1 Introduction 415
15.2 Hydrogeologic information 415
15.2.1 Hydrogeology of Tulare Lake Hydrologic Region 415
15.2.2 Groundwater hydrology and quality 420
15.2.3 Climate 420
15.3 Groundwater quality and the sources of As 421
15.3.1 Shallow groundwater 421
15.3.2 Deep groundwater of Hanford 423
15.4 Processes and factors affecting As solubility and mobility 428
15.4.1 Evapotranspiration 429
15.4.2 Geochemical processes 429
15.4.2.1 Sorption/desorption 430
15.4.2.2 Redox transformation 432
15.4.2.3 Speciation and transport 434
15.4.3 Agriculture: irrigation and drainage 435
15.5 Future directions 437
References 438
Chapter 16. Arsenic in soils in the areas of former mining and mineral processing in Lower Silesia, southwestern Poland 442
Abstract 442
16.1 Introduction 442
16.2 Arsenic-rich ‘‘hot’’ spots in Lower Silesia 445
16.2.1 Zloty Stok 445
16.2.2 Zelezniak 446
16.2.3 Czarnow 446
16.3 Materials and methods 447
16.3.1 Sampling sites 447
16.3.2 Basic soil properties 448
16.3.3 Total and soluble As in soils 448
16.3.4 Arsenic speciation 449
16.4 Results 451
16.4.1 Soil properties and As concentrations in soils 451
16.4.1.1 Zloty Stok 453
16.4.1.2 Zelezniak 457
16.4.1.3 Czarnow 458
16.4.2 Arsenic solubility 458
16.4.3 Plant uptake 459
16.4.4 Speciation results 460
16.5 Future directions 467
Acknowledgements 468
References 468
Chapter 17. Arsenic speciation and mobility in mine wastes from a copper–arsenic mine in Devon, UK: a SEM, XAS, Sequential chemical extraction study 472
Abstract 472
17.1 Introduction 472
17.2 Materials and methods 473
17.2.1 Study area 473
17.2.2 Methods of As production 473
17.2.3 Sample collection and preparation 475
17.2.4 Analytical methods 475
17.2.4.1 Chemical analysis 475
17.2.4.2 Partitioning by sequential extraction 475
17.2.4.3 Mineralogical and scanning electron microscopy analysis 476
17.2.4.4 X-ray absorption spectroscopy analysis 477
17.2.5 Thermodynamic data 478
17.3 Results and discussion 478
17.3.1 Bulk chemistry of the tailings and mine wastes 478
17.3.2 Mineralogic/petrographic characterisation 478
17.3.2.1 Sandy tailings 478
17.3.2.2 Black furnace slag 483
17.3.2.3 Ore crusher area 485
17.3.2.4 Efflorescences 485
17.3.3 Arsenic partitioning by sequential extractions 485
17.3.4 Arsenic speciation by X-ray absorption spectroscopy 486
17.3.4.1 X-ray absorption near edge structure spectra 486
17.3.4.2 Extended X-ray absorption fine structure spectra 493
17.3.5 Arsenic in water leachates 496
17.3.6 Thermodynamic calculations 496
17.4 Geochemical controls on As mobilisation 499
17.5 Future directions 499
Acknowledgements 499
References 500
Chapter 18. Origin and fate of arsenic in a historic mining area of Mexico 504
Abstract 504
18.1 Introduction 504
18.2 Mining in Mexico 505
18.3 Arsenic in Mexico 507
18.4 Arsenic in Zimapán 511
18.4.1 Geological framework 512
18.4.2 The aquifer system 513
18.4.3 Hydrogeochemistry 515
18.4.4 Arsenic from mining wastes 516
18.4.5 Fate of As 517
18.5 Treatment alternatives 518
18.5.1 Overview 518
18.5.2 Bench-scale jar tests 518
18.5.3 Mobile treatment plant 521
18.5.4 Geological treatment 523
18.6 Future directions 524
References 525
Section VI: Biogeochemistry of Arsenic in Soils and Aquatic Environment 530
Chapter 19. Dynamics of arsenic at hydrothermal spring outlets: role of Fe oxyhydroxides and carbonates 532
Abstract 532
19.1 Introduction 532
19.2 The study site 533
19.2.1 Geography and geological setting 533
19.2.2 Spring waters 533
19.2.3 The origin of As 535
19.3 Observation of the fate of As 536
19.4 Dynamics of As: laboratory and field experiments 537
19.4.1 Materials and methods 537
19.4.1.1 Experimental systems and protocols 537
19.4.1.2 Solution characterisation 538
19.4.1.3 Precipitate characterisation 539
19.4.2 Results and discussion 539
19.4.2.1 Cézallier water characterisation 539
19.4.2.2 Major element evolution 539
19.4.2.3 Dynamics of As 541
19.4.2.4 Mechanisms controlling As behaviour 541
19.5 Mechanistic approach: geochemical modelling 543
19.5.1 Model 543
19.5.1.1 Conceptual model 543
19.5.1.2 Thermodynamic and kinetic data 544
19.5.1.3 Transport modelling 546
19.5.2 Modelling results 546
19.5.2.1 Simulation of the laboratory experiments (with adjustment of kinetic constants) 546
19.5.2.2 Simulation of laboratory experiments (without adjustment of kinetic constants) 546
19.5.2.3 Modelling of the ‘‘Fast’’ dynamic field experiments 547
19.5.3 Discussion on the modelling results 548
19.5.3.1 Laboratory experiment simulation 548
19.5.3.2 Field experiment simulation 549
19.6 Conclusion and perspectives 550
References 551
Section VII: Wastes and Material Flow 556
Chapter 20. Arsenic flows in the environment of the European Union: a synoptic review 558
Abstract 558
20.1 Introduction 559
20.2 Production, uses and emissions of As in the EU-15 562
20.2.1 Production of As 562
20.2.2 Uses of As 562
20.2.3 Atmospheric emission of As 564
20.3 Arsenic in soils and landfills 571
20.3.1 Behaviour of As in soil compartment 571
20.3.2 Arsenic in landfills 571
20.4 Summary and conclusions 572
Acknowledgements 573
References 573
Section VIII: Health Risks of Arsenic 580
Chapter 21. Arsenic in drinking water and bladder cancer: review of epidemiological evidence 582
Abstract 582
21.1 Introduction 582
21.2 Arsenic in water 584
21.3 Other sources of arsenic 585
21.3.1 Arsenic in the diet 585
21.3.2 Occupational arsenic exposure 589
21.3.3 Arsenic in tobacco 590
21.4 Mechanisms of arsenic-induced carcinogenesis 590
21.5 Epidemiologic investigations of arsenic and bladder cancer 594
21.5.1 Ecologic investigations 594
21.5.2 Ecologic cohort investigations 597
21.5.3 Individual-level investigations 598
21.6 Confounding variables and effect modifiers 602
21.6.1 Disinfection byproducts 602
21.6.2 Nitrates 603
21.6.3 Total fluid intake and urinary stasis 603
21.6.4 Micronutrients 604
21.6.5 Genetic polymorphisms 604
21.7 Future directions 605
References 607
Section IX: Arsenic Remediation 616
Chapter 22. Role of natural red earth in arsenic removal in drinking water – comparison with synthetic gibbsite and goethite 618
Abstract 618
22.1 Introduction 618
22.1.1 Geochemical processes controlling As mobility 619
22.1.2 Dominant adsorptive minerals 619
22.2 Novel As adsorbent – natural red earth 620
22.2.1 Characteristic features of natural red earth 620
22.2.1.1 Surface properties of natural red earth 622
22.2.1.2 Arsenic adsorption 623
22.3 Experimental procedure 623
22.3.1 Materials 623
22.3.1.1 Sorbent materials 623
22.3.1.2 Reagents 626
22.3.2 Methods 626
22.3.2.1 Adsorption experiments 626
22.3.2.2 Model calculations 626
22.4 Arsenic adsorption on gibbsite and goethite 627
22.4.1 Adsorption edges 627
22.4.1.1 Arsenite adsorption 627
22.4.1.2 Arsenate adsorption 628
22.4.2 Adsorption data modelling 628
22.4.3 Use of red earth for the removal of As from drinking water 629
22.5 Future directions 630
Acknowledgements 631
References 631
Chapter 23. Household water treatment option: removal of arsenic in presence of natural Fe-containing groundwater by solar oxidation 634
Abstract 634
23.1 Introduction 635
23.2 Materials and methods 639
23.2.1 Preparation of stock solutions 639
23.2.2 Preparation of synthetic groundwater (test solution) 640
23.2.3 Preparation of simulated groundwater (field samples) 640
23.2.4 Solar radiation experiments 640
23.2.5 Effect of phosphorous 643
23.2.6 Experiment with different chelating agents 643
23.2.7 Reproducibility 644
23.3 Results and discussions 644
23.3.1 Groundwater quality of BDP 644
23.3.2 Solar radiation experiments 646
23.3.3 Chelating agents 647
23.3.4 Arsenic removal in presence of phosphate 649
23.4 Discussion and conclusion 650
References 651
Chapter 24. Arsenite oxidation by ferrate in aqueous solution 654
Abstract 654
24.1 Introduction 655
24.2 Experimental section 657
24.2.1 Overview 657
24.2.2 Materials 658
24.2.3 Oxidation of As(III) 659
24.2.4 Analysis of As(III) and As(V) 659
24.3 Results and discussion 659
24.3.1 The effects of oxidizing conditions 659
24.3.2 Discussion on possible redox processes 663
24.3.3 Correction factor of Fe(VI) 665
24.4 Suggestions for further research 667
Acknowledgments 667
References 668
Subject Index 674
Author Index 672

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A Practical Guide for the Food Industry

von Veslemoy Andersen; Huub L. M. Lelieveld; Yasmine Motarjemi

eBook Download (2023)
Elsevier Science (Verlag)
CHF 214,90