Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Handbook of Inorganic Electrochromic Materials -

Handbook of Inorganic Electrochromic Materials (eBook)

C.G. Granqvist (Herausgeber)

eBook Download: PDF
1995 | 1. Auflage
650 Seiten
Elsevier Science (Verlag)
978-0-08-053290-5 (ISBN)
Systemvoraussetzungen
192,61 inkl. MwSt
(CHF 188,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Electrochromic materials are able to change their optical properties in a persistent and reversible way under the action of a voltage pulse. This book explores electrochromism among the metal oxides, with detailed discussions of materials preparation (primarily by thin film technology), materials characterization by (electro)chemical and physical techniques, optical properties, electrochromic device design, and device performance. The vast quantity of information presented is structured in a systematic manner and the optical data is interpreted within a novel conceptual framework.

The publication will serve as a comprehensive foundation and reference work for future studies within the rapidly expanding field of electrochromic materials and devices. These devices are of particular interest for information displays, variable-transmittance (smart) windows, variable-reflectance mirrors and variable-emittance surfaces.


Electrochromic materials are able to change their optical properties in a persistent and reversible way under the action of a voltage pulse. This book explores electrochromism among the metal oxides, with detailed discussions of materials preparation (primarily by thin film technology), materials characterization by (electro)chemical and physical techniques, optical properties, electrochromic device design, and device performance. The vast quantity of information presented is structured in a systematic manner and the optical data is interpreted within a novel conceptual framework.The publication will serve as a comprehensive foundation and reference work for future studies within the rapidly expanding field of electrochromic materials and devices. These devices are of particular interest for information displays, variable-transmittance (smart) windows, variable-reflectance mirrors and variable-emittance surfaces.

Front Cover 1
Handbook of Inorganic Electrochromic Materials 4
Copyright Page 5
Contents 10
PREFACE 8
Chapter 1. Introduction 18
1.1 Prototype Device Design and Some Key Concepts 18
1.2 Survey of Electrochromic Oxide Films 22
1.3 Applications Areas for Electrochromic Devices 26
1.4 Some Notes on the History of Electrochromism 30
PART ONE: CASE STUDY ON TUNGSTEN OXIDE 34
Chapter 2. Bulk Crystalline Tungsten Oxide 36
2.1 Crystal Structures of Tungsten Oxide 36
2.2 Crystal Structures of Tungsten Bronzes and Ion Intercalated Tungsten Oxide 38
2.3 Optical Properties 40
2.4 Electrical Properties 43
Chapter 3. Tungsten Oxide Films: Preparation, Structure, and Composition of Evaporated Films 46
3.1 Deposition Aspects 46
3.2 Density 48
3.3 Elemental Composition: Oxygen Deficiency and Hydrogen Content 50
3.4 Microstructure Studied by Electron Microscopy 54
3.5 Microstructure Studied by X-ray Extinction 54
3.6 Molecular Bonding Studied by Raman Spectroscopy 56
3.7 Molecular Bonding Studied by Infrared Absorption Spectroscopy 58
3.8 Cluster-type Microstructures 62
3.9 Columnar Microstructures 66
3.10 Crystallization of As-deposited Films 68
Chapter 4. Tungsten Oxide Films: Preparation, Structure, and Composition of Sputter-Deposited Films 72
4.1 Deposition Aspects 72
4.2 Characterization of As-deposited Films by Several Techniques 74
4.3 Cluster-type Microstructures 76
4.4 Columnar Microstructures 78
4.5 Crystallization of As-deposited Films 78
Chapter 5. Tungsten Oxide Films: Preparation, Structure, and Composition of Electrochemically and Chemically Prepared Films 82
5.1 Electrodeposition 82
5.2 Anodization 84
5.3 Chemical Vapor Deposition and Spray Deposition 85
5.4 Sol-gel-based Techniques 88
5.5 Miscellaneous Techniques 94
Chapter 6. Tungsten Oxide Films: Ion Intercalation/deintercalation Studied by Electrochemical Techniques 96
6.1 Ion Intercalation Reactions and Electrochemical Analysis: Some Introductory Remarks 96
6.2 Diffusion Constants 98
6.3 Electromotive Force 104
6.4 Chronoamperometry: Kinetics for Ion Intercalation and Deintercalation 108
6.5 Cyclic Voltammetry 112
6.6 Impedance Spectrometry 120
6.7 Beam Deflectometry 124
6.8 Microbalance Measurements 126
Chapter 7. Tungsten Oxide Films: Ion Intercalation/deintercalation Studied by Physical Techniques 128
7.1 Depth Profiling of Intercalated Species 128
7.2 Structure Determination by X-ray Extinction and Electron Diffraction 130
7.3 Raman Spectroscopy 134
7.4 Infrared Absorption Spectroscopy 140
7.5 Electron Paramagnetic Resonance 146
7.6 Nuclear Magnetic Resonance 148
7.7 Electron Spectroscopies Applied to Core Levels 148
7.8 Electron Spectroscopies Applied to Valence and Conduction Bands 150
Chapter 8. Tungsten Oxide Films: Ultraviolet Absorption and Semiconductor Bandgap 156
8.1 Semiconductor Bandgap in As-prepared Films 156
8.2 Bandgap Widening in Disordered Films: Possible Explanations 160
8.3 Urbach Tails 162
8.4 Bandgap Widening upon Ion Intercalation 162
Chapter 9. Tungsten Oxide Films: Optical Properties in the Luminous and Near-Infrared Range 164
9.1 Spectral Absorptance of As-prepared Films 164
9.2 Refractive Index of As-prepared Films 166
9.3 Coloration Techniques for Disordered Films: The Eightfold Way 170
9.4 Energy for the Absorption Peak 176
9.5 Transmittance and Reflectance of Ion Intercalated Films 176
9.6 Optical Constants of Ion Intercalated Films 182
9.7 Coloration Efficiency 182
Chapter 10. Tungsten Oxide Films: Theoretical Models for the Optical Properties 192
10.1 Absorption in Disordered Films: Color Centers 192
10.2 Absorption in Disordered Films: Small Polarons 193
10.3 Absorption in Disordered Films: Intervalence Charge Transfer 198
10.4 Transmittance and Reflectance of Crystalline Films: Drude Theory 198
10.5 Transmittance and Reflectance of Crystalline Films: Theory for Heavily Doped Semiconductors with Ionized Impurity Scattering 200
10.6 Optical Properties of Granular Films: Effective Medium Theories 204
Chapter 11. Tungsten Oxide Films: Electrical Properties 210
11.1 Electrical dc Conductivity 210
11.2 Electrical ac Conductivity 214
11.3 Thermoelectric Effect 216
11.4 Photoelectric Effects 218
PART TWO: ELECTROCHROMISM AMONG THE OXIDES (EXCEPT TUNGSTEN OXIDE) 224
Chapter 12. Molybdenum Oxide Films 226
12.1 Crystal Structure of Bulk-like Molybdenum Oxide 226
12.2 Films Made by Evaporation: Preparation and Characterization 228
12.3 Films Made by Sputter-deposition: Preparation and Characterization 230
12.4 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 230
12.5 Ion Intercalation/deintercalation Reactions and Diffusion Constants 232
12.6 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 234
12.7 Ion Intercalation/deintercalation Studied by Physical Techniques 234
12.8 Ultraviolet Absorption and Semiconductor Bandgap 236
12.9 Optical Properties in the Luminous and Near-infrared Range 238
12.10 Coloration Efficiency 240
Chapter 13. Miscellaneous Tungsten- and Molybdenum-Oxide-Containing Films 242
13.1 Binary Oxides, Especially Tungsten-Molybdenum oxide 242
13.2 Ternary Oxides, Especially Tungsten-Molybdenum-Vanadium Oxide 246
13.3 Tungsten Oxyfluoride 248
13.4 Composites of Tungsten oxide and Metal 252
Chapter 14. Iridium Oxide Films 254
14.1 Crystal Structure of Bulk-like Iridium Oxide 254
14.2 Films Made by Evaporation and Sputter-deposition: Preparation and Characterization 255
14.3 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 259
14.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants 261
14.5 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 262
14.6 Ion Intercalation/deintercalation Studied by Physical Techniques 268
14.7 Optical Properties 274
14.8 Coloration Efficiency 280
Chapter 15. Titanium Oxide Films 282
15.1 Crystal Structure of Bulk-like Titanium Oxide 282
15.2 Films Made by Evaporation and Sputter-deposition: Preparation and Characterization 283
15.3 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 283
15.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants 284
15.5 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 286
15.6 Ion Intercalation/deintercalation Studied by Physical Techniques 286
15.7 Optical Properties 288
15.8 Coloration Efficiency 292
Chapter 16. Manganese Oxide Films 294
16.1 Crystal Structure of Bulk-like Manganese Oxide 294
16.2 Preparation and Characterization of Thin Films 296
16.3 Ion Intercalation/deintercalation Reactions and Diffusion Constants 296
16.4 Ion Intercalation/deintercalation Studied by Electrochemical and Physical Techniques 298
16.5 Optical Properties 298
Chapter 17. Vanadium Dioxide Films 302
17.1 Crystal Structure and Electrical Properties of Bulk-like Vanadium Dioxide 302
17.2 Preparation and Characterzation of Thin Films 304
17.3 Ion Intercalation/deintercalation Reactions and Changes in Electrical Conductivity 306
17.4 Optical Properties 308
Chapter 18. Vanadium Pentoxide Films 312
18.1 Crystal Structure of Bulk-like Vanadium Pentoxide 312
18.2 Films Made by Evaporation: Preparation and Characterization 315
18.3 Films Made by Sputter-deposition: Preparation and Characterization 318
18.4 Films Made by Electrochemical and Chemical Techniques (Especially Sol-gel Deposition): Preparation and Characterization 320
18.5 Ion Intercalation/deintercalation Reactions, Ion Exchange, and Diffusion Constants 326
18.6 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 328
18.7 Ion Intercalation/deintercalation Studied by Physical Techniques 334
18.8 Optical Properties of As-prepared Films 340
18.9 Optical Properties of Ion Intercalated Films, and Coloration Efficiency 346
18.10 Theoretical Models for The Optical Properties 348
18.11 CF-doped Vanadium Pentoxide Films 350
Chapter 19. Nickel Oxide Films 356
19.1 Crystal Structure of Bulk-like Nickel Oxide, Especially Materials Used as Battery Electrodes 356
19.2 Films Made by Evaporation: Preparation and Characterization 357
19.3 Films Made by Sputter-deposition: Preparation and Characterization 359
19.4 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 362
19.5 Ion Intercalation/deintercalation Reactions and Diffusion Constants 364
19.6 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 366
19.7 Ion Intercalation/deintercalation Studied by Physical Techniques 376
19.8 Ultraviolet Absorption and Semiconductor Bandgap 382
19.9 Optical Properties in the Luminous and Near-infrared Range: Evaporated Films 384
19.10 Optical Properties in the Luminous and Near-infrared Range: Sputter-deposited Films 384
19.11 Optical Properties in the Luminous and Near-infrared Range: Films Made by Electrochemical and Chemical Techniques 388
19.12 Coloration Efficiency 392
19.13 Towards a Theoretical Model for the Optical Properties 392
Chapter 20. Cobalt Oxide Films 396
20.1 Crystal Structure of Bulk-like Cobalt Oxide 396
20.2 Films Made by Evaporation and Sputter-deposition: Preparation and Characterization 397
20.3 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 397
20.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants 402
20.5 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 402
20.6 Ion Intercalation/deintercalation Studied by Physical Techniques 404
20.7 Optical Properties 404
20.8 Towards a Theoretical Model for the Optical Properties 406
Chapter 21. Niobium Oxide Films 408
21.1 Crystal Structure of Bulk-like Niobium Oxide 408
21.2 Films Made by Evaporation and Sputter-deposition: Preparation and Characterization 409
21.3 Films Made by Electrochemical and Chemical Techniques: Preparation and Characterization 409
21.4 Ion Intercalation/deintercalation Reactions and Diffusion Constants 410
21.5 Ion Intercalation/deintercalation Studied by Electrochemical Techniques 412
21.6 Ion Intercalation/deintercalation Studied by Physical Techniques 412
21.7 Optical Properties 414
21.8 Coloration Efficiency 416
Chapter 22. Miscellaneous Oxide Films 418
22.1 Rhenium Oxide 418
22.2 Rhodium Oxide 418
22.3 Ruthenium Oxide 420
22.4 Iron Oxide 421
22.5 Chromium Oxide 422
22.6 Tantalum Oxide 425
22.7 Copper Oxide 426
22.8 Praseodymium Oxide 428
22.9 Doped Strontium Titanate 428
Chapter 23. Systematics for the Electrochromism in Transition Metal Oxides 430
23.1 The Ubiquitous MeO6 Octahedron 430
23.2 Canonical Bandstructure 432
23.3 A Conceptual Framework for Electrochromism Among the Transition Metal Oxides 434
Chapter 24. Inorganic Non-oxide Electrochromic Materials 438
24.1 Tungsten Sulfide 438
24.2 Heteropolyacids, Especially Phosphotungstic Acid 438
24.3 Indium Nitride and Tin Nitride 440
24.4 Graphite 440
24.5 ß-zirconium Nitride Chloride 440
24.6 Prussian Blue: Bulk Structure and Oxidation/reduction Capability 441
24.7 Prussian Blue: Preparation and Characterization of Thin Films 441
24.8 Prussian Blue: Optical Properties 442
24.9 Altenative Hexacyanometallates 444
PART THREE: ELECTROCHROMIC DEVICES 448
Chapter 25. Transparent Electrical Conductors 450
25.1 Doped Oxide Semiconductor Films 450
25.2 Coinage Metal Films 452
Chapter 26. Electrolytes and Ion Conductors 458
26.1 Liquid Electrolytes 458
26.2 Inorganic Solid Electrolytes and Ion Conductors: Introductory Remarks 461
26.3 Inorganic Solid Electrolytes and Ion Conductors: Mainly Alkali Ion Conductors 462
26.4 Polymer Electrolytes: Introductory Remarks and Data for Proton Conductors 463
26.5 Polymer Electrolytes: Mainly Lithium Ion Conductors 466
Chapter 27. Ion Storage Materials: Brief Overview 470
27.1 Materials for Reflecting Display-type Devices 470
27.2 Materials for Transparent Devices 472
27.3 Comments on Ion Storage in Transparent Electrical Conductors 474
Chapter 28. Devices with Liquid Electrolytes 476
28.1 Display-type Devices with Proton Conducting Electrolytes 476
28.2 Display-type Devices with Lithium Ion Conducting Electrolytes 478
28.3 Transparent Devices with Dispersed Redox Agents, Including Area-related Effects and Durability Issues 480
28.4 Transparent Charge-balanced Devices 482
28.5 Comment on Devices for Variable Thermal Emittance 486
Chapter 29. Devices with Solid Inorganic Electrolytes and Ion Conductors 490
29.1 Reflecting Devices with Bulk-type Proton Conductors 490
29.2 Reflecting Devices with Bulk-type Sodium Ion Conductors 493
29.3 Devices with Thin Film Proton Conductors Relying on Incorporated Water (Deb Devices) 493
29.4 Charge-balanced Devices with Thin Film Proton Conductors 496
29.5 Devices with Thin Film Alkali Ion Conductors and Silver Ion Conductors 502
29.6 A Photo-electrochromic Thin Film Device 504
Chapter 30. Devices with Polymer Electrolytes 506
30.1 Proton Conducting Polymers 506
30.2 Lithium Ion Conducting Polymers 511
30.3 Sodium and Potassium Conducting Polymers 514
Chapter 31. Time-Dependent Device Performance: A Unified Treatment 516
31.1 Color/bleach Response Time: Effects of Film Porosity 516
31.2 Color/bleach Response Time: Effects of Applied Voltage and Electrolyte Hydration 518
31.3 Color/bleach Response Time: Effects of Temperature 520
31.4 Color/bleach Response Time: Effects of Geometric Area 524
31.5 Non-volatility of the Optical Memory: Open Circuit Performance 524
31.6 Non-volatility of the Optical Memory: Effects of Drive Circuitry 526
31.7 Durability: Etching of Tungsten Oxide in Acid Electrolytes 526
31.8 Durability: Non-reversible Ion Incorporation from the Electrolyte, and Cycling-induced Crystallization of Tungsten Oxide Films 530
31.9 Durability: Effects of Ion Incorporation from the Substrate 532
31.10 Durability: Comments on Iridium Oxide Films 532
Appendix: Abbreviations, Acronyms, and Symbols 536
References 544
Index 634

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
CHF 48,80
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
CHF 48,80