Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Evolutionary Optimization: the uGP toolkit (eBook)

eBook Download: PDF
2011 | 2011
XIII, 178 Seiten
Springer US (Verlag)
978-0-387-09426-7 (ISBN)

Lese- und Medienproben

Evolutionary Optimization: the uGP toolkit -  Ernesto Sanchez,  Massimiliano Schillaci,  Giovanni Squillero
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes an award-winning evolutionary algorithm that outperformed experts and conventional heuristics in solving several industrial problems. It presents a discussion of the theoretical and practical aspects that enabled ?GP (MicroGP) to autonomously find the optimal solution of hard problems, handling highly structured data, such as full-fledged assembly programs, with functions and interrupt handlers.

For a practitioner, ?GP is simply a versatile optimizer to tackle most problems with limited setup effort. The book is valuable for all who require heuristic problem-solving methodologies, such as engineers dealing with verification and test of electronic circuits; or researchers working in robotics and mobile communication. Examples are provided to guide the reader through the process, from problem definition to gathering results.

For an evolutionary computation researcher, ?GP may be regarded as a platform where new operators and strategies can be easily tested.

MicroGP (the toolkit) is an active project hosted by Sourceforge: http://ugp3.sourceforge.net/


This book describes an award-winning evolutionary algorithm that outperformed experts and conventional heuristics in solving several industrial problems. It presents a discussion of the theoretical and practical aspects that enabled ?GP (MicroGP) to autonomously find the optimal solution of hard problems, handling highly structured data, such as full-fledged assembly programs, with functions and interrupt handlers.For a practitioner, ?GP is simply a versatile optimizer to tackle most problems with limited setup effort. The book is valuable for all who require heuristic problem-solving methodologies, such as engineers dealing with verification and test of electronic circuits; or researchers working in robotics and mobile communication. Examples are provided to guide the reader through the process, from problem definition to gathering results.For an evolutionary computation researcher, ?GP may be regarded as a platform where new operators and strategies can be easily tested.MicroGP (the toolkit) is an active project hosted by Sourceforge: http://ugp3.sourceforge.net/

Preface 6
Contents 9
Chapter 1 Evolutionary computation 12
1.1 Natural and artificial evolution 12
1.2 The classical paradigms 15
1.3 Genetic programming 18
Chapter 2 Why yet another one evolutionary optimizer? 19
2.1 Background 19
2.2 Where to draw the lines 20
2.3 Individuals 21
2.4 Problem specification 23
2.5 Coding Techniques 24
Chapter 3The µGP architecture 26
3.1 Conceptual design 27
3.2 The evolutionary core 27
3.2.1 Evolutionary Operators 28
3.2.2 Population 29
3.3 The Evolutionary Cycle 30
3.3.1 Genetic operator selection 30
3.3.2 Parents selection 31
3.3.3 Offspring Generation 32
3.3.4 Individual Evaluation and Slaughtering 33
3.3.5 Termination and Aging 33
Chapter 4 Advanced features 35
4.1 Self adaptation for exploration or exploitation 35
4.1.1 Self-adaptation inertia 36
4.1.2 Operator strength 36
4.1.3 Tournament size 37
4.2 Escaping local optimums 37
4.2.1 Operator activation probability 38
4.2.2 Tuning the elitism 38
4.3 Preserving diversity 39
4.3.1 Clone detection, scaling and extermination 40
4.3.2 Entropy and delta-entropy computation 40
4.3.3 Fitness holes 41
4.3.4 Population topology and multiple populations 42
4.4 Coping with the real problems 43
4.4.1 Parallel fitness evaluation 44
4.4.2 Multiple fitness 45
Chapter 5 Performing an evolutionary run 46
5.1 Robot Pathfinder 48
5.2 µGPSettings 50
5.3 Population Settings 52
5.4 Library of Constraints 56
5.5 Launching the experiment 60
5.6 µGP Extractor 62
Chapter 6 Command line syntax 64
6.1 Starting a run 64
6.2 Controlling messages to the user 65
6.3 Getting help and information 66
6.4 Controlling logging 66
6.5 Controlling recovery 67
6.6 Controlling evolution 68
6.7 Controlling evaluation 69
Chapter 7 Syntax of the settings file 71
7.1 Controlling evolution 72
7.2 Controlling logging 74
7.3 Controlling recovery 75
Chapter 8 Syntax of the population parameters file 77
8.1 Strategy parameters 77
8.1.1 Base parameters 78
8.1.2 Parameters for self adaptation 81
8.1.3 Other parameters 84
Chapter 9 Syntax of the external constraints file 86
9.1 Purposes of the constraints 86
9.2 Organization of constraints and hierarchy 87
9.3 Specifying the structure of the individual 92
9.4 Specifying the contents of the individual 95
Chapter 10 Writing a compliant evaluator 101
10.1 Information from µGP to the fitness evaluator 101
10.2 Expected fitness format 102
10.2.1 Good Examples 103
10.2.2 Bad Examples 104
Chapter 11 Implementation details 106
11.1 Design principles 106
11.2 Architectural choices 107
11.2.1 The Graph library 108
11.2.2 The Evolutionary Core library 110
11.2.3 Front end 117
11.3 Code organization and class model 117
Chapter 12 Examples and applications 128
12.1 Classical one-max 128
12.1.1 Fitness evaluator 129
12.1.2 Constraints 131
12.1.3 Population settings 133
12.1.4 µGP settings 135
12.1.5 Running 136
12.2 Values of parameters and their influence on the evolution: Arithmetic expressions 137
12.2.1 De Jong 3 137
12.2.2 De Jong 4 Modified 142
12.2.3 Carrom 143
12.3 Complex individuals’ structures and evaluation: Bit-counting in Assembly 149
12.3.1 Assembly individuals representation 149
12.3.2 Evaluator 152
12.3.3 Running 154
Appendix A Argument and option synopsis 155
Appendix B External constraints synopsis 171
References 179

Erscheint lt. Verlag 1.4.2011
Zusatzinfo XIII, 178 p.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen CAD-Programme
Mathematik / Informatik Mathematik Statistik
Technik
Wirtschaft Betriebswirtschaft / Management
Schlagworte evolutionary algorithm • evolutionary computation • evolutionary optimization • genetic programming • graph-based representation • Industrial Problems • MicroGP • problem complexity • real-world applications • Turing-complete
ISBN-10 0-387-09426-1 / 0387094261
ISBN-13 978-0-387-09426-7 / 9780387094267
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95