Composite Materials (eBook)
371 Seiten
Springer London (Verlag)
978-1-84882-831-5 (ISBN)
The first edition of 'Composite Materials' introduced a new way of looking at composite materials. This second edition expands the book's scope to emphasize application-driven and process-oriented materials development.
The approach is vibrant yet functional.
Deborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA.
Deborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA.
In Celebration of the 20th Anniversary of the Composite Materials Research Laboratory 6
Preface to the Second Edition 7
Preface to the First Edition 9
Contents 11
1 Composite Material Structure and Processing 16
1.1 Introduction 16
1.2 Composite Material Structure 19
1.2.1 Continuous Fiber Composites 20
1.2.2 Carbon–Carbon Composites 21
1.2.3 Cement-Matrix Composites 22
1.3 Processing of CompositeMaterials 23
1.3.1 Polymer-Matrix Composites 23
1.3.2 Metal-Matrix Composites 29
1.3.3 Carbon-Matrix Composites 36
1.3.4 Ceramic-Matrix Composites 40
1.3.5 Cement-Matrix Composites 41
1.4 Composite Design Concepts 42
1.5 Applications of Composite Materials 45
Review Questions 47
References 48
Further Reading 48
2 Carbon Fibers and Nanofillers 50
2.1 Carbons 50
2.2 Carbon Fibers 51
2.3 Nanofillers 55
Review Questions 60
Further Reading 61
3 Mechanical Properties 62
3.1 Property Requirements 62
3.2 Basic Mechanical Properties 64
3.2.1 Modulus of Elasticity 64
3.2.2 Strength 72
3.2.3 Ductility 76
3.3 Effect of Damage on the Mechanical Properties 76
3.4 Brittle vs. Ductile Materials 77
3.5 Strengthening 77
3.6 Vibration Damping Ability 80
3.6.1 Introduction 80
3.6.2 Viscoelastic Behavior 82
3.6.3 Pseudoplasticity and Ferroelasticity 99
3.6.4 Interfacial Damping 100
3.6.5 Structural Materials for Damping 100
3.6.6 Comparison of Materials Utilized for Damping 102
3.6.7 Emerging Materials for Damping 104
Example Problems 105
Review Questions 106
References 107
Further Reading 108
4 Durability and Degradation of Materials 109
4.1 Corrosion Resistance 109
4.1.1 Introduction to Electrochemical Behavior 109
4.1.2 Corrosion Protection 118
4.2 Elevated Temperature Resistance 122
4.2.1 Technological Relevance 122
4.2.2 Effects of Thermal Degradation 123
4.2.3 Origins of Thermal Degradation 124
4.2.4 Effects of Temperature on the Composite Microstructure 127
4.2.5 Improving the Elevated Temperature Resistance 129
4.2.6 Investigation of Elevated Temperature Resistance 131
4.3 Fatigue Resistance 136
4.3.1 Mechanical Fatigue 136
4.3.2 Thermal Fatigue 139
4.4 Durability 139
Review Questions 142
References 143
Further Reading 143
5 Materials for Lightweight Structures, Civil Infrastructure, Joining and Repair 144
5.1 Materials for Lightweight Structures 144
5.1.1 Composites with Polymer, Carbon, Ceramic and Metal Matrices 144
5.1.2 Cement-Matrix Composites 145
5.2 Materials for Civil Infrastructure 146
5.3 Materials for Joining 149
5.3.1 Sintering or Autohesion 150
5.3.2 Welding 151
5.3.3 Brazing and Soldering 154
5.3.4 Adhesion 157
5.3.5 Cementitious Joining 158
5.3.6 Joining Using Inorganic Binders 159
5.3.7 Joining Using Carbon Binders 162
5.3.8 Fastening 162
5.3.9 Expansion Joints 165
5.4 Materials Used for Repair 166
5.4.1 Patching 166
5.4.2 Wrapping 166
5.4.3 Self-healing 167
Review Questions 168
References 169
Further Reading 169
6 Tailoring Composite Materials 170
6.1 Tailoring by Component Selection 170
6.1.1 Polymer-Matrix Composites 170
6.1.2 Cement-Matrix Composites 171
6.1.3 Metal-Matrix Composites 175
6.2 Tailoring by Interface Modification 183
6.2.1 Interface Bond Modification 183
6.2.2 Interface Composition Modification 192
6.2.3 Interface Microstructure Modification 198
6.3 Tailoring by Surface Modification 198
6.4 Tailoring by Microstructure Control 204
6.4.1 Crystallinity Control 204
6.4.2 Porosity Control 205
6.5 Tailoring by Organic–Inorganic Nanoscale Hybridization 207
6.5.1 Nanocomposites with Organic Solid Nanoparticles Dispersed in an Inorganic Matrix 207
6.5.2 Nanocomposites with an Organic Component Dispersed in an Inorganic Matrix Where the Organic Component is Added as a Liquid 210
6.5.3 Nanocomposites Made by Inorganic Component Exfoliationand Subsequent Organic Component Adsorption 211
Review Questions 212
References 213
Further Reading 213
7 Electrical Properties 215
7.1 Origin of Electrical Conduction 215
7.2 Volume Electrical Resistivity 216
7.3 Calculating the Volume Electrical Resistivityof a Composite Material 218
7.3.1 Parallel Configuration 218
7.3.2 Series Configuration 220
7.4 Contact Electrical Resistivity 221
7.5 Electric Power and Resistance Heating 222
7.5.1 Scientific Basis 222
7.5.2 Self-Heating Structural Materials 224
7.6 Effect of Temperature on the Electrical Resistivity 231
7.6.1 Scientific Basis 231
7.6.2 Structural Materials Used as Thermistors 233
7.7 Effect of Strain on the Electrical Resistivity (Piezoresistivity) 237
7.7.1 Scientific Basis 237
7.7.2 Effects of Strain and Strain-Induced Damage on the Electrical Resistivity of Polymer-Matrix Structural Composites 238
7.8 Seebeck Effect 245
7.8.1 Scientific Basis 245
7.8.2 Thermoelectric Composites 251
7.9 Applications of Conductive Materials 256
7.9.1 Overview of Applications 256
7.9.2 Microelectronic Applications 258
7.9.3 Electrochemical Applications 259
7.10 Conductive Phase Distribution and Connectivity 260
7.10.1 Effect of the Conductive Filler Aspect Ratio 260
7.10.2 Effect of the Nonconductive Thermoplastic Particle Viscosity 261
7.10.3 Effect of Conductive Particle Size 263
7.10.4 Effect of Additives 264
7.10.5 Levels of Percolation 268
7.11 Electrically Conductive Joints 268
7.11.1 Mechanically Strong Joints for Electrical Conduction 269
7.11.2 Mechanically Weak Joints for Electrical Conduction 276
7.11.3 Electrical Connection Through Pressure Application 279
7.11.4 Electrical Connection Through a Z-Axis Electrical Conductor 280
7.12 Porous Conductors 281
7.12.1 Porous Conductors Without a Nonconductive Filler 282
7.12.2 Porous Conductors With a Nonconductive Fillerand a Conductive Additive 283
Review Questions 284
References 285
Further Reading 286
8 Thermal Properties 288
8.1 Thermal Expansion 288
8.2 Specific Heat 293
8.3 Phase Transformations 295
8.3.1 Scientific Basis 295
8.3.2 Shape Memory Effect 298
8.3.3 Calorimetry 304
8.4 Thermal Conductivity 304
8.5 Thermal Conductance of an Interface 309
8.6 Evaluating the Thermal Conduction 310
8.6.1 Guarded Hot Plate Method 310
8.6.2 Laser FlashMethod 313
8.7 Thermal Interface Materials 315
8.8 Composites Used for Microelectronic Heat Sinks 323
8.8.1 Metals, Diamond, and Ceramics 324
8.8.2 Metal-Matrix Composites 325
8.8.3 Carbon-Matrix Composites 328
8.8.4 Carbon and Graphite 329
8.8.5 Ceramic-Matrix Composites 330
8.8.6 Polymer-Matrix Composites 330
8.9 Carbon Fiber Polymer-Matrix Composites for Aircraft Heat Dissipation 331
8.9.1 Interlaminar Interface Nanostructuring 332
8.9.2 Through-Thickness Thermal Conductivity 333
8.9.3 Through-Thickness Compressive Properties 334
8.9.4 Flexural Properties 335
8.10 Composites Used for Thermal Insulation 337
Example Problems 339
Review Questions 341
References 341
Further Reading 341
Appendix: Test 343
Test Questions 343
Part I (32%) 343
Part II (68%) 347
Test Solutions 349
Part I (32%) 349
Part II (68%) 349
Index 352
Erscheint lt. Verlag | 3.4.2010 |
---|---|
Reihe/Serie | Engineering Materials and Processes | Engineering Materials and Processes |
Zusatzinfo | 371 p. 210 illus. |
Verlagsort | London |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie |
Technik ► Maschinenbau | |
Wirtschaft | |
Schlagworte | Carbon Fiber • Carbon-Matrix Composites • Cement-Matrix Composites • Ceramic-Matrix Composites • Composite material • composite materials • Degradation • Electrical Properties • Materials Tailoring • mechanical properties • Metal-Matrix Composites • Nanofillers • Polymer-Matr • polymer-matrix composites • Processing • thermal properties |
ISBN-10 | 1-84882-831-4 / 1848828314 |
ISBN-13 | 978-1-84882-831-5 / 9781848828315 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich