A First Course in Linear Model Theory
Seiten
2021
|
2nd edition
Chapman & Hall/CRC (Verlag)
978-1-4398-5805-9 (ISBN)
Chapman & Hall/CRC (Verlag)
978-1-4398-5805-9 (ISBN)
This second edition features several new topics that are extremely relevant to the current research in statistical methodology. Revised or expanded topics include analysis of covariance, Bayesian linear and generalized linear model, nonlinear regression, among others.
Thoroughly updated throughout, A First Course in Linear Model Theory, Second Edition is an intermediate-level statistics text that fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the authors introduce to students the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models. In addition to adding R functionality, this second edition features three new chapters and several sections on new topics that are extremely relevant to the current research in statistical methodology. Revised or expanded topics include linear fixed, random and mixed effects models, generalized linear models, Bayesian and hierarchical linear models, model selection, multiple comparisons, and regularized and robust regression.
New to the Second Edition:
Coverage of inference for linear models has been expanded into two chapters.
Expanded coverage of multiple comparisons, random and mixed effects models, model selection, and missing data.
A new chapter on generalized linear models (Chapter 12).
A new section on multivariate linear models in Chapter 13, and expanded coverage of the Bayesian linear models and longitudinal models.
A new section on regularized regression in Chapter 14.
Detailed data illustrations using R.
The authors' fresh approach, methodical presentation, wealth of examples, use of R, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.
Thoroughly updated throughout, A First Course in Linear Model Theory, Second Edition is an intermediate-level statistics text that fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the authors introduce to students the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models. In addition to adding R functionality, this second edition features three new chapters and several sections on new topics that are extremely relevant to the current research in statistical methodology. Revised or expanded topics include linear fixed, random and mixed effects models, generalized linear models, Bayesian and hierarchical linear models, model selection, multiple comparisons, and regularized and robust regression.
New to the Second Edition:
Coverage of inference for linear models has been expanded into two chapters.
Expanded coverage of multiple comparisons, random and mixed effects models, model selection, and missing data.
A new chapter on generalized linear models (Chapter 12).
A new section on multivariate linear models in Chapter 13, and expanded coverage of the Bayesian linear models and longitudinal models.
A new section on regularized regression in Chapter 14.
Detailed data illustrations using R.
The authors' fresh approach, methodical presentation, wealth of examples, use of R, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.
Nalini Ravishanker, Zhiyi Chi and Dipak K. Dey are Professors in the Department of Statistics at the University of Connecticut, Storrs, USA.
1. A Review of Vector and Matrix Algebra. 2. Properties of Special Matrices. 3. Generalized Inverses and Solutions to Linear Systems. 4. The General Linear Model. 5. Multivariate Normal and Related Distributions. 6. Sampling from the Multivariate Normal Distribution. 7. Inference for the General Linear Model-I. 8. Inference for the General Linear Model-II. 9. Multiple Linear Regression Models. 10. Fixed-Effects Linear Models. 11. Random-Effects and Mixed-Effects Models. 12. Generalized Linear Models. 13. Special Topics. 14. Miscellaneous Topics. Appendices.
Erscheint lt. Verlag | 30.8.2022 |
---|---|
Reihe/Serie | Chapman & Hall/CRC Texts in Statistical Science |
Zusatzinfo | 16 Tables, black and white; 31 Line drawings, black and white; 31 Illustrations, black and white |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 1097 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Biologie | |
Wirtschaft ► Volkswirtschaftslehre ► Ökonometrie | |
ISBN-10 | 1-4398-5805-5 / 1439858055 |
ISBN-13 | 978-1-4398-5805-9 / 9781439858059 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Übungsaufgaben – Fallstudien – Lösungen
Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 34,90
mit Aufgaben, Klausuren und Lösungen
Buch | Softcover (2023)
UTB (Verlag)
CHF 34,85
Set aus Lehr- und Arbeitsbuch
Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 49,95