Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Measure Theory and Probability Theory - Krishna B. Athreya, Soumendra N. Lahiri

Measure Theory and Probability Theory

Buch | Softcover
619 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2006
Springer-Verlag New York Inc.
978-1-4419-2191-8 (ISBN)
CHF 134,80 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book arose out of two graduate courses that the authors have taught duringthepastseveralyears;the?rstonebeingonmeasuretheoryfollowed by the second one on advanced probability theory. The traditional approach to a ?rst course in measure theory, such as in Royden (1988), is to teach the Lebesgue measure on the real line, then the p di?erentation theorems of Lebesgue, L -spaces on R, and do general m- sure at the end of the course with one main application to the construction of product measures. This approach does have the pedagogic advantage of seeing one concrete case ?rst before going to the general one. But this also has the disadvantage in making many students’ perspective on m- sure theory somewhat narrow. It leads them to think only in terms of the Lebesgue measure on the real line and to believe that measure theory is intimately tied to the topology of the real line. As students of statistics, probability, physics, engineering, economics, and biology know very well, there are mass distributions that are typically nonuniform, and hence it is useful to gain a general perspective. This book attempts to provide that general perspective right from the beginning. The opening chapter gives an informal introduction to measure and integration theory. It shows that the notions of ?-algebra of sets and countable additivity of a set function are dictated by certain very na- ral approximation procedures from practical applications and that they are not just some abstract ideas.

Measures and Integration: An Informal Introduction.- Measures.- Integration.- Lp-Spaces.- Differentiation.- Product Measures, Convolutions, and Transforms.- Probability Spaces.- Independence.- Laws of Large Numbers.- Convergence in Distribution.- Characteristic Functions.- Central Limit Theorems.- Conditional Expectation and Conditional Probability.- Discrete Parameter Martingales.- Markov Chains and MCMC.- Stochastic Processes.- Limit Theorems for Dependent Processes.- The Bootstrap.- Branching Processes.

Erscheint lt. Verlag 23.11.2010
Reihe/Serie Springer Texts in Statistics
Zusatzinfo XVIII, 619 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Betriebswirtschaft / Management
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-4419-2191-5 / 1441921915
ISBN-13 978-1-4419-2191-8 / 9781441921918
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95