Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Neural Networks in Optimization -  Xiang-Sun Zhang

Neural Networks in Optimization

Buch | Softcover
371 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2000
Springer-Verlag New York Inc.
978-1-4419-4836-6 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
People are facing more and more NP-complete or NP-hard problems of a combinatorial nature and of a continuous nature in economic, military and management practice. There are two ways in which one can enhance the efficiency of searching for the solutions of these problems. The first is to improve the speed and memory capacity of hardware. We all have witnessed the computer industry's amazing achievements with hardware and software developments over the last twenty years. On one hand many computers, bought only a few years ago, are being sent to elementary schools for children to learn the ABC's of computing. On the other hand, with economic, scientific and military developments, it seems that the increase of intricacy and the size of newly arising problems have no end. We all realize then that the second way, to design good algorithms, will definitely compensate for the hardware limitations in the case of complicated problems. It is the collective and parallel computation property of artificial neural net­ works that has activated the enthusiasm of researchers in the field of computer science and applied mathematics. It is hard to say that artificial neural networks are solvers of the above-mentioned dilemma, but at least they throw some new light on the difficulties we face. We not only anticipate that there will be neural computers with intelligence but we also believe that the research results of artificial neural networks might lead to new algorithms on von Neumann's computers.

1. Preliminaries.- 2. Introduction to Mathematical Programming.- 3. Unconstrained Nonlinear Programming.- 4. Constrained Nonlinear Programming.- 5. Introduction to Artificial Neural Network.- 6. Feedforward Neural Networks.- 7. Feedback Neural Networks.- 8. Self-Organized Neural Networks.- 9. NN Models for Combinatorial Problems.- 10. NN for Quadratic Programming Problems.- 11. NN for General Nonlinear Programming.- 12. NN for Linear Programming.- 13. A Review on NN for Continuious Optimization.- References.

Erscheint lt. Verlag 7.12.2010
Reihe/Serie Nonconvex Optimization and Its Applications ; 46
Zusatzinfo XII, 371 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Naturwissenschaften Physik / Astronomie Thermodynamik
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
ISBN-10 1-4419-4836-8 / 1441948368
ISBN-13 978-1-4419-4836-6 / 9781441948366
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch (2024)
Springer Vieweg (Verlag)
CHF 53,15