Applied Probability
Springer-Verlag New York Inc.
978-1-4419-7164-7 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Chapter 1 reviews elementary probability and provides a brief survey of relevant results from measure theory. Chapter 2 is an extended essay on calculating expectations. Chapter 3 deals with probabilistic applications of convexity, inequalities, and optimization theory. Chapters 4 and 5 touch on combinatorics and combinatorial optimization. Chapters 6 through 11 present core material on stochastic processes. If supplemented with appropriate sections from Chapters 1 and 2, there is sufficient material for a traditional semester-long course in stochastic processes covering the basics of Poisson processes, Markov chains, branching processes, martingales, and diffusion processes. The second edition adds two new chapters on asymptotic and numerical methods and an appendix that separates some of the more delicate mathematical theory from the steady flow of examples in the main text.
Besides the two new chapters, the second edition includes a more extensive list of exercises, many additions to the exposition of combinatorics, new material on rates of convergence to equilibrium in reversible Markov chains, a discussion of basic reproduction numbers in population modeling, and better coverage of Brownian motion. Because many chapters are nearly self-contained, mathematical scientists from a variety of backgrounds will find Applied Probability useful as a reference
Kenneth Lange is the Rosenfeld Professor of Computational Genetics in the Departments of Biomathematics and Human Genetics at the UCLA School of Medicine and the Chair of the Department of Human Genetics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, high-dimensional optimization, and applied stochastic processes. Springer previously published his books Mathematical and Statistical Methods for Genetic Analysis, 2nd ed., Numerical Analysis for Statisticians, 2nd ed., and Optimization. He has written over 200 research papers and produced with his UCLA colleague Eric Sobel the computer program Mendel, widely used in statistical genetics.
Basic Notions of Probability Theory.- Calculation of Expectations.- Convexity, Optimization, and Inequalities.- Combinatorics.- Combinatorial Optimization.- Poisson Processes.- Discrete-Time Markov Chains.- Continuous-Time Markov Chains.- Branching Processes.- Martingales.- Diffusion Processes.- Asymptotic Methods.- Numerical Methods.- Poisson Approximation.- Number Theory.- Appendix: Mathematical Review.
Reihe/Serie | Springer Texts in Statistics |
---|---|
Zusatzinfo | XVI, 436 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Original-Titel | Applied Probability |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Wirtschaft ► Volkswirtschaftslehre ► Ökonometrie | |
Schlagworte | combinatorics • computational methods • markov chains • Probability Theory • Stochastic Processes |
ISBN-10 | 1-4419-7164-5 / 1441971645 |
ISBN-13 | 978-1-4419-7164-7 / 9781441971647 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich