Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Signal Transduction in Plant Growth and Development -

Signal Transduction in Plant Growth and Development

Desh P.S. Verma (Herausgeber)

Buch | Softcover
X, 318 Seiten
2011 | 1. Softcover reprint of the original 1st ed. 1996
Springer Wien (Verlag)
978-3-7091-7476-0 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Plant growth and development is controlled by various environmental cues that are sensed by the plant via various signal transduction pathways coupled to specific response. Some of these pathways are conserved from yeast to plants being regulated by various kinases and phosphatases. In addition, plants have many unique pathways that transduce to specific signals such as light, phytohormones and oligosaccharides. This volume highlights some of the examples of the plant signal transduction machinery opening new vistas in research on plant growth and development. The new technologies including the use of bacteria, yeast and Arabidopsis as functional complementation systems are providing proof of function of many of the proteins that show homology to those from other organisms. These studies will eventually lead to improvement of crop plants and use of plants as a new resource for producing desirable products to meet the growing needs of mankind.

Signal Transducing Proteins in Plants: an Overview.- I. Introduction.- II. Signal Transduction Paradigm.- III. Conserved Signaling Proteins in Plants.- IV. Novel Plant Signaling Mechanisms.- V. Conclusions and Future Challenges.- VI. References.- G-Protein Regulation of Plant K+ Channels.- I. Introduction.- II. G-Protein Regulation of Animal Ion Channels: Background and Methodology.- III. G-Protein Regulation of Plant Ion Channels.- IV. Future Prospects.- V. References.- Metabolite Sensing and Regulatory Points of Carbon and Nitrogen Metabolic Pathways and Partitioning in Plants.- I. Introduction.- II. Global Regulatory Systems of Metabolic Pathways in Prokaryotes and Lower Eukaryotes.- III. Regulation of Carbon and Nitrogen Metabolism in Higher Plants.- IV. Future Prospects: Challenges for Metabolic Engineering of Crop Plants.- V. References.- Regulation of C/N Interactions in Higher Plants by Protein Phosphorylation.- I. Introduction.- II. Regulation of Key Cytosolic Enzymes by Reversible Phosphorylation.- III. Control of C/N Interactions.- IV. Conclusions.- V. References.- Phosphorylation and the Cytoskeleton.- I. Introduction.- II. Cytoskeletal Dynamics and Phosphorylation of the Polymer Proteins.- III. Phosphorylation of Cytoskeletal Associated Proteins During Interphase.- IV. Phosphorylation of Cytoskeletal Proteins During Cell Division.- V. Summary.- VI. References.- The Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase: a Cardinal Event in C4 Photosynthesis.- I. Introduction.- II. C4 PEPC, a Highly Regulated Plant Enzyme.- III. Regulatory Phosphorylation of PEPC and Its Role in C4 Photosynthesis.- IV. Conclusions and Outlook.- V. References.- Salicylic Acid - an Important Signal in Plants.- I. Introduction.- II. Salicylic Acid in Thermogenesis.-III. Disease Resistance.- IV. Salicylic Acid as a Signal in Plant Defense.- V. Salicylic Acid as the Translocated Signal.- VI. Salicylic Acid Metabolism.- VII. Mechanisms of Action of Salicylic Acid.- VIII Salicylic Acid Signal Transduction Pathway.- IX. Perspectives.- X. References.- Biologically Active Lipids and Lipid-modulated Protein Kinase in Plants.- I. Introduction.- II. What Enzymes Do Generate Biologically Active Lipids in Animals and in Plants?.- III. Lipid-modulated Protein Kinase in Plants.- IV. References.- S-Loeus Receptor Kinase Genes and Self-incompatibility in Brassica napus.- I. Introduction.- II. Genetics of the Self-incompatibility System.- III. Molecular Biology of the Self-incompatibility System.- IV. Self-incompatibility in Brassica napus.- V. Self-compatibility in Brassica napus.- VI. Molecular Model for Brassica Self-incompatibility.- VII. Conclusion.- VIII. References.- Mechanisms of Input and Output in Circadian Transduction Pathways.- I. Introduction.- II. Rhythmic Outputs.- III. Interaction of Photoreceptors and Clocks.- IV. Conclusion.- V. References.- Role of Plasmodesmata and Virus Movement Proteins in Spread of Plant Viruses.- I. Introduction.- II. Plasmodesmata.- III. Virus Movement in Infected Plants.- IV. Conclusions.- V. References.- Ex-Planta and In-Planta Signals in Legume-Rhizobium Interaction.- I. Introduction.- II. Plant Flavonoid Signals and the Response of Rhizobia.- III. Synthesis of Nod Factors by Rhizobium.- IV. Other Rhizobial Signals Affecting Nodule Formation.- V. Signals Produced by the Host in Response to Nod Factors.- VI. Early Host Response to Bacterial Signals.- VII. Plant Phosphatidylinositol-3-kmase.- VIII. Endocytosis and Subcellular Compartmentation in the Host Cell.- IX. Conclusions.- X. References.

Erscheint lt. Verlag 26.10.2011
Reihe/Serie Plant Gene Research
Zusatzinfo X, 318 p.
Verlagsort Vienna
Sprache englisch
Maße 170 x 244 mm
Gewicht 587 g
Themenwelt Naturwissenschaften Biologie Botanik
Naturwissenschaften Biologie Zellbiologie
Weitere Fachgebiete Land- / Forstwirtschaft / Fischerei
Schlagworte Bacteria • Development • growth • Phytohormon • Plant • Plant growth • plants • proteins • signal transduction
ISBN-10 3-7091-7476-7 / 3709174767
ISBN-13 978-3-7091-7476-0 / 9783709174760
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich