Climate Change and Management of Cool Season Grain Legume Crops (eBook)
XIX, 460 Seiten
Springer Netherland (Verlag)
978-90-481-3709-1 (ISBN)
This book covers all aspect of legume production management technologies, plant ecological response, nutrients management, biological nitrogen fixation, molecular approaches, potential cultivars, biodiversity management under climate change. Also covered are various aspects of legume management under climate change such as, production management technology, ecology & adaptation, diseases, and international trade; physiology and crops response to nutrients, drought, salinity, and water use efficiency; Biodiversity management, molecular approaches and biological Nitrogen fixation; climate change and strategies.
This book presents the most comprehensive and up to date review of research on different cool season grain legume crops, nutrients management, biotic and abiotic stresses management, agronomical approaches for drought management, salinity, drought, weed management and water use efficiency, impact on international trade around the world.
This book covers all aspect of legume production management technologies, plant ecological response, nutrients management, biological nitrogen fixation, molecular approaches, potential cultivars, biodiversity management under climate change. Also covered are various aspects of legume management under climate change such as, production management technology, ecology & adaptation, diseases, and international trade; physiology and crops response to nutrients, drought, salinity, and water use efficiency; Biodiversity management, molecular approaches and biological Nitrogen fixation; climate change and strategies.This book presents the most comprehensive and up to date review of research on different cool season grain legume crops, nutrients management, biotic and abiotic stresses management, agronomical approaches for drought management, salinity, drought, weed management and water use efficiency, impact on international trade around the world.
Preface 4
Acknowledgments 6
Contents 7
Contributors 9
About the Editors 14
1 Climate Change, a Challenge for Cool Season Grain Legume Crop Production 17
1.1 Introduction 17
1.1.1 Climate Change 19
1.2 Effect of Climate Change on Cool Season GrainLegume Production 21
1.3 Effect of Elevated CO2 on Cool Season Grain Legume Crops 22
1.4 Conclusions 22
References 23
2 Modelling Climate Change Effects on Legume Crops: Lenmod, a Case Study 26
2.1 Introduction 26
2.2 LENMOD 27
2.3 LENMOD Case Study 1: The UK 28
2.3.1 Validation of the Model 29
2.3.2 Prediction of Crop Growth 30
2.4 LENMOD Case Study 2: Climate Change in NZ 32
2.4.1 Predictions of NZ Climate 32
2.4.2 Sowing Date Effects on Yield 33
2.4.3 Climate Scenario Effects on Yield 34
2.5 Conclusions 35
References 35
3 Ecology and Adaptation of Legumes Crops 38
3.1 Introduction 38
3.2 Benefits of Legume Based-Agriculture System 40
3.3 Ecology and Management of Legume Crops 41
3.4 Aspects of Soil and Plant Nutrition Under Warming Climates and Temperate Zones 42
3.5 Constraints of Legumes Production: The Case of Common Bean (Phaseolus vulgaris L.) 43
3.6 Actual and Potential Possibilities for Legume Crops Breeding Based on Ecological Traits 44
3.7 The Role of Legumes to Provide Soil N Through N Fixation 46
3.8 Current Perspectives for Drought Tolerance Research in Arid Zones 46
References 47
4 Physiological Responses of Grain Legumesto Stress Environments 49
4.1 Introduction 50
4.2 Excessive Water (Flooding) Stress 52
4.3 Soil Water Deficit Stress 54
4.4 High Temperature Stress 65
4.5 Low Temperature (Chilling) Stress 71
4.6 General Stress Responses of Various Physiological Processes 72
4.6.1 Photosynthesis 73
4.6.2 Cumulative Incident Radiation 74
4.6.3 Radiation Interception 75
4.6.4 Efficiency of Conversion 77
4.6.5 Flowering Behavior 81
4.6.6 Partitioning 82
4.7 Transgenic Approach for Stress Tolerance 84
4.8 Use of Molecular Markers 86
4.9 Conclusion 87
References 88
5 Consequences of Predicted Climatic Changes on International Trade in Cool Season Grain Legume Crops 101
5.1 Introduction 101
5.2 Production of Cool Season Grain Legumes 101
5.2.1 Dry Pea 102
5.2.2 Chickpea 103
5.2.3 Broad Bean 103
5.2.4 Lentil 103
5.2.5 Summary of Production 104
5.3 International Trade in Grain Legume Crops 104
5.3.1 Overview 105
5.3.2 Dry Pea 107
5.3.3 Lentil 107
5.3.4 Chickpea 108
5.3.5 Broad Bean 108
5.3.6 Trade Summary 108
5.4 Climate Change and International Trade of Grain Legume Crops 110
5.5 Conclusions 110
References 111
6 Impact of Climate Change on Diseases of Cool Season Grain Legume Crops 112
6.1 Introduction: Climate Change and Disease 112
6.1.1 Questions and Complexity 112
6.1.2 Climate Change Effects on Disease: A World View 112
6.1.3 Climate Change Effects on Disease: A Local View 113
6.1.4 Climate Change Effects on Disease: Existing Evidence 114
6.2 Climate Change Prospects for Plant Disease 114
6.2.1 Temperature Effects 116
6.2.2 Carbon Dioxide 117
6.3 Legume Diseases and Climate Change 118
6.3.1 Ascochyta 120
6.3.2 Anthracnose 121
6.4 Future Prospects on Legume Disease 122
References 123
7 Pest Management in Grain Legumes and Climate Change 127
7.1 Introduction 127
7.2 Climate Change and Its Influence on Production of Grain Legumes 127
7.3 Insect Pest Problems in Grain Legumes and the Likely Influence of Climate Change on Distribution and Severity of Damage by Insect Pests 128
7.4 Extent of Losses 131
7.5 Pest Management in Grain Legumes Under Climate Change 132
7.5.1 Monitoring and Sampling of Pest Populations 132
7.5.2 Economic Thresholds 132
7.5.3 Cultural Practices 133
7.5.4 Host Plant Resistance 134
7.5.5 Biological Control 136
7.5.6 Chemical Control 137
7.6 Biotechnological Approaches for Pest Management in Grain Legumes 138
7.6.1 Transgenics 138
7.6.2 Molecular Markers 138
7.7 Storage Pests and Their Management 139
7.7.1 Pre-harvest Control 140
7.7.2 Hermetic Storage 140
7.7.3 Solar Treatment 141
7.7.4 Use of Inert Dusts 141
7.7.5 Use of Traps 141
7.7.6 Chemical Control 141
7.7.7 Host Plant Resistance 142
7.7.8 Natural Plant Products 142
7.7.9 Strategies for Controlling Bruchid Damage in the Field and Storage 142
7.8 Conclusions 143
References 143
8 Agronomic Approaches to Stress Management 152
8.1 Introduction 152
8.2 Choice of Crops and Varieties 152
8.3 Tillage and Water Conservation 154
8.4 Planting Date 155
8.5 Sowing Depth 156
8.6 Seed Priming 156
8.7 Plant Population 157
8.8 Straw Mulching 157
8.9 Intercropping 158
8.10 Weed Management 158
8.11 Nutrient Management 159
8.12 Water Harvesting 160
References 161
9 Major Nutrients Supply in Legume Crops Under Stress Environments 166
9.1 Introduction 166
9.2 Nitrogen 167
9.3 Phosphorus 169
9.4 Potassium 171
9.5 Sulfur 173
9.6 Calcium and Magnesium 173
9.7 Micronutrients 174
9.8 Conclusions 175
References 176
10 Salinity and Drought Management in Legume Crops 181
10.1 Introduction 182
10.2 Soil Salinity and Sodicity 183
10.2.1 Saline Soils 184
10.2.2 Sodic Soils 184
10.2.3 Saline Sodic Soils 184
10.3 Water Salinity and Sodicity 184
10.4 Salinity Effect on Transpiration, Photosynthesis, Plant Growth and Crop Yields 186
10.5 Salinity and Global Climatic Changes 186
10.6 Legumes and Salinity/Sodicity 188
10.6.1 Nutritional Imbalances in Legumes Under Salinity 188
10.6.2 Root Development of Legumes Under Salinity Stress 189
10.7 Salt Tolerance in Legumes 189
10.8 Drought Management Techniques with Respect to Salinity, Sodicity and Brackish Water Irrigation 190
10.8.1 Improved Hydraulic Techniques 192
10.8.1.1 Leaching of Salts 192
10.8.1.2 Drainage 193
10.8.1.3 Improved Irrigation Practices 193
10.8.2 Appropriate Agronomic Practices 194
10.8.3 Inclusion of Legumes in Crop Rotation 195
10.8.4 Application of Amendments 195
10.8.5 Appropriate Selection of Plants 196
10.8.6 Genetic Variability and Breeding for Salt Tolerance 196
10.9 Conclusions 197
References 198
11 Nutrients Use Efficiency in Legume Crops to Climatic Changes 202
11.1 Introduction 202
11.1.1 Environmental Degradation and Accelerated Desertification 203
11.1.2 Interactions with Soil Processes 203
11.1.3 Legumes 204
11.2 Factors Associated with Changing Nutrient Use Efficiency 204
11.2.1 N-Fixation 204
11.2.2 Elevated CO2, Photosynthesis and Soil Nutrients 205
11.2.3 Temperature, Photosynthesis and Soil Nutrients 206
11.2.4 Drought, pH, Salinity, and Crop Nutrient Efficiency 207
11.3 Mechanisms to Overcome Reductions in Nutrient Use Efficiency 208
11.3.1Sustainable Fertilizing Practices for Improving Crop Nutrient Efficiency and CO2 Sequestration 208
11.3.2 Genetic Adaptations 211
11.4 Conclusions 211
References 212
12 Water Use Efficiency Under Stress Environments 216
12.1 Introduction 216
12.2 Concept of Water Use Efficiency 217
12.3 Water Requirement of Grain Legumes 219
12.4 Effect of Drought 220
12.4.1 Mechanism of Drought Stress Resistance 221
12.4.1.1 Osmoregulation 221
12.4.1.2 Root Growth Dynamics 222
12.4.1.3 Water Stress and Microbial Activity 223
12.5 Factors Influencing Water Use Efficiency 223
12.5.1 Breeding Approaches 223
12.5.2 Soil Management 225
12.5.2.1 Tillage 225
12.5.2.2 Crop Residues 226
12.5.3 Agronomic Management 226
12.5.3.1 Time of Sowing 226
12.5.3.2 Planting Method 227
12.5.3.3 Criteria for Scheduling Irrigation/Supplemental Irrigation 227
12.5.3.4 Crop Nutrition 228
12.5.3.5 Cropping Systems 229
12.6 Radiation Use Efficiency 231
12.7 Rain Water Saving and Recycling 231
12.8 Methods of Irrigation 232
References 233
13 Efficient Root System in Legume Crops to Stress Environments 237
13.1 Introduction 237
13.2 Root Development Under Stress Environments Under Warming Climates (Case Studies) 238
13.3 Soya Bean 240
13.4 Faba Bean 241
13.5 Chickpea 242
13.5.1 Importance of Root Traits in Drought Avoidance 242
13.6 Genetic Variability in Root Traits 243
13.6.1 Molecular Mapping of QTLs for Drought Avoidance Root Traits 244
13.7 Techniques for Growing Plants for Saving Water 244
13.8 Conclusions 245
References 246
14 Weed Suppression in Legume Crops for Stress Management 251
14.1 Introduction 251
14.2 Types of Weeds and Weed Effects in Legume Cropping Systems 252
14.2.1 Parasitic Weeds 253
14.2.1.1 Orobanche Species 253
14.2.1.2 Striga Species 255
14.2.1.3 Alectra Species 256
14.2.2 Non-parasitic Weeds 257
14.2.3 Weed Effects 259
14.3 Drought, Climate Change and Weed Effects 260
14.3.1 Elevated Temperature 262
14.3.2 Carbon Dioxide (CO2) Enrichment 263
14.3.3 Reduced Precipitation 264
14.4 Weed Control: The Status Quo and Future Needs 265
14.4.1 Manual Weed Control 265
14.4.2 Resistant Genotypes 266
14.4.2.1 Chemically-Induced Resistance 266
14.4.3 Transgenic Resistance 267
14.4.3.1 Inherent Genetic Resistance 267
14.4.3.2 Weed-Suppressive Genotypes 269
14.4.4 Crop Rotation and Fallowing 269
14.4.5 Intercropping 271
14.4.6 Trap and Catch Cropping 272
14.4.7 Cover Cropping and Residue Management 272
14.4.8 Soil Fertility Management 273
14.4.9 Biological Control 274
14.4.10 Chemical Control 275
14.4.10.1 Types of Herbicides 276
14.4.10.2 Limitations of Herbicides 277
14.4.11 Integrated Weed Management 279
14.5 Scaling-Up Weed Management Practices 280
14.6 Conclusion 281
References 282
15 Efficient Biological Nitrogen Fixation Under Warming Climates 290
15.1 Introduction 290
15.2 Legume Physiology Under Drought 290
15.2.1 Host Plants Under Drought 291
15.2.2 Regulation of Nodule NF Under Drought 292
15.2.2.1 The Role of Oxygen 292
15.2.2.2 The Involvement of Carbon Metabolism in Nodules 293
15.2.2.3 Nitrogen Status and Feed-Back Inhibition of NF 293
15.2.2.4 Other Aspects Involved in NF Regulation Under Drought 294
15.3 Rhizobium Tolerance to Drought and Other Associated Stresses 295
15.3.1 Natural Occurrence, Diversity and Survival in Drought Conditions 295
15.3.2 Response to Other Concomitant Factors 296
15.3.2.1 Increased CO 2 Levels 296
15.3.2.2 High Temperature 297
15.3.2.3 Salt Stress 297
15.3.2.4 Soil Acidity 298
15.3.2.5 Biotic Stresses 298
15.3.2.6 Effect of Other Associated Organisms 298
15.4 Improving NF and Yield Under Drought Conditions 299
15.4.1 Agronomic Practices 299
15.4.1.1 Optimizing Seed Inoculation and Sowing 299
15.4.1.2 Improving Soil Conditions 300
15.4.1.3 Nutrient Availability 301
15.4.1.4 Intercropping 301
15.4.2 Rhizobium Management 302
15.4.3 Legume Breeding Programmes 303
15.5 Conclusion 304
References 305
16 Microbes and Agrochemicals to Stress Tolerance 314
16.1 Introduction 314
16.1.1 Effects of Drought on Biological Nitrogen Fixation 314
16.1.2 Alteration in CO2 Concentration and Its Impact on Biological Nitrogen Fixation 315
16.1.3 Effects of Minerals on Biological Nitrogen Fixation 316
16.1.3.1 Phosphorous 316
16.1.3.2 Potassium (K+) 317
16.1.3.3 Silicon 318
16.1.4 Effects of Higher CO2 Counteracting Drought Under Adequate P Nutrition 318
16.2 Effect of Inoculation with Benefical Microbes in Biological Nitrogen Fixation 319
16.2.1 Under Drought Stress 319
16.2.2 VAM and CO2 Concentration 323
16.2.3 Application of Microbes and Phosphorous Content 323
16.3 Strategic Role for Grain Legumes with Climate Change (CO2 Concentration) 324
16.4 Conclusion 325
16.5 Future Strategies 326
References 326
17 Integrated Legume Crops Production and ManagementTechnology 332
17.1 Introduction 332
17.2 Production Constraints 334
17.2.1 Drought 335
17.2.2 Cold 335
17.2.3 Diseases 335
17.2.4 Salinity 335
17.2.5 Insect Pests 336
17.3 New Cultivars Development and Management 336
17.4 Agronomic Management 337
17.5 Introduction of New Approaches 338
17.6 Moisture Conservation Through Tephra Covers 339
17.7 Plant Hormone 340
17.8 Fertilizers 341
17.9 Enhanced Nitrogen Fixation 342
17.9.1 Agronomic Benefits 343
17.9.2 Environmental Benefits 343
17.10 Arbuscular Mycorrhizal 343
17.11 Integrated Diseases Management 344
17.12 Integrated Insect- Pests Management 344
17.13 Components of Integrated Management 346
17.14 Future Thrust 347
17.14.1 Research Needs and Opportunities 347
17.14.2 Seed Systems Bottlenecks 347
17.14.3 Germplasm Screening and Evaluation 348
17.14.4 Government Policies and Support 348
17.15 Conclusions 349
References 350
18 Legumes Cultivars for Stress Environments 357
18.1 Introduction 357
18.2 Drought Resistant Genera 358
18.2.1 Cicer L. 358
18.2.1.1 Breeding for Resistance to Drought and Cold 359
18.2.1.2 Variety Improvement 360
18.2.1.3 Resistance to Multiple Stresses, Varieties and Sources 360
18.2.2 Lathyrus L. 362
18.2.2.1 Breeding for Resistance to Drought and Cold 362
18.2.3 Lens Miller 363
18.2.3.1 Breeding for Resistance to Drought and Cold 363
18.2.4 Lupinus L. 365
18.2.4.1 Breeding for Resistance to Drought and Cold 365
18.3 Drought Sensitive Genera 366
18.3.1 Pisum L. 366
18.3.1.1 Breeding for Resistance to Drought and Cold 366
18.3.2 Vicia L. 367
18.3.2.1 Breeding for Resistance to Drought and Cold 368
18.4 Resistance to Drought and Cold in Wild Species 368
18.4.1 Wild Cicer Species 369
18.4.2 Wild Lathyrus Species 369
18.4.3 Wild Lens Species 370
18.4.4 Wild Lupinus Species 370
18.4.5 Wild Pisum Species 370
18.4.6 Wild Vicia Species 371
18.4.7 Gene Pools in Cool Season Food Legumes 371
18.4.8 Germplasm Screening and Evaluation 372
18.4.9 Generation Advancement and Selection in Segregating Populations 372
18.5 Conclusions and Future Outlook 373
References 374
19 Molecular Biology for Stress Management 383
19.1 Introduction to the Genomics of Drought Tolerance in Legumes 383
19.2 The Currently Available Germplasm Resources and Phenotypic Responses to Drought Worldwide 384
19.2.1 Common Bean (Phaseolus vulgaris L.) 385
19.2.2 Soybean [Glycine max (L.) Merr.] 386
19.2.3 Chickpea (Cicer arietinum L.) 387
19.2.4 Peanut (Arachis hypogea L.) 388
19.2.5 Cowpea [Vigna unguiculata (L.) Walp.] 389
19.3 Mapping Populations, Identification of Drought Tolerance QTL and MAS 389
19.4 Transcriptomics and Expression of Candidate Drought Tolerance Genes 392
19.4.1 Common Bean (Phaseolus vulgaris L.) 393
19.4.2 Cowpea (Vigna unguiculata L. Walp.) 394
19.4.3 Soybean [Glycine max (L.) Merr.] 395
19.4.4 Peanut (Arachis hypogea L.) 396
19.4.5 Chickpea (Cicer arietinum L.) 397
19.4.6 Alfalfa (Medicago sativa L.) 397
19.4.7 Pea (Pisum sativum L.), Mung Bean [Vigna radiata (L.) Wilczek] and Faba Bean (Vicia faba L.) 398
19.4.8 Model Legumes: Barrel Medic (Medicago truncatula) and Lotus (Lotus japonicus) 398
19.4.9 Perspectives 399
19.5 Transgenic Approaches to Overcome Drought Stress 399
19.5.1 Transgenics Involving Functional Proteins 400
19.5.2 Transgenics Involving Regulatory Proteins 403
19.5.3 Perspectives 404
19.6 Future Molecular Approaches for Drought Tolerance 405
References 406
20 Biodiversity Challenges with Climate Change 415
20.1 Introduction and Overview 415
20.2 Germplasm Collections, Diversity and Utilisation 416
20.3 Drought Stress 419
20.4 High Temperature Tolerance 420
20.5 Sensible Heat Transfer 421
20.5.1 Radiant Heat 421
20.5.2 Latent Heat 422
20.6 Low Temperature and Frost Tolerance 422
20.7 Increased CO2 Levels Responses in Growth and in Nitrogen Fixation 424
20.8 Disease Responses and Challenges 424
20.9 Major Foliar Fungi (Leaf and Stem Diseases) 425
20.10 Impact of Climate Change on Groups of Pathogens 427
20.11 Sources of Resistance to Key Pathogens of Cool Season Food Legumes 428
20.12 Impact of Diseases on Biodiversity Under Future Climates 431
20.13 Conclusion 431
References 432
21 Strategies to Combat the Impact of Climatic Changes 439
21.1 Introduction 439
21.2 Approaches to Combating Adverse Outcomes 441
21.2.1 Governmental Policies 441
21.2.2 Reduction of CO2 Emission 442
21.2.3 Educating People and Strengthening National Organizations 443
21.2.4 Breeding Strategies and Development of Cultivars 443
21.2.4.1 Focusing on Drylands and Incorporation of Drought Tolerance in Legume Crops 443
21.2.4.2 Low and High Temperature Tolerance in Legume Crops 444
21.2.4.3 Water Use Efficiency of Legume Crops 445
21.2.5 Plant Modelling 445
21.2.6 Integrated Production Management Technologies 446
21.3 Climate Change and Legume Crops in Northern Latitudes: A Case Presentation 446
21.3.1 Combating Drought in Northern Latitudes 447
21.3.2 Adapting Legume Crops to Changing Climates in Northern Latitudes 448
21.4 Conclusions 449
References 450
Index 452
Erscheint lt. Verlag | 3.6.2010 |
---|---|
Zusatzinfo | XIX, 460 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie ► Biochemie |
Naturwissenschaften ► Biologie ► Botanik | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Technik | |
Weitere Fachgebiete ► Land- / Forstwirtschaft / Fischerei | |
Schlagworte | Adaptation • biodiversity • climate change • Climate Change Management • crops • nitrogen • Physiology |
ISBN-10 | 90-481-3709-8 / 9048137098 |
ISBN-13 | 978-90-481-3709-1 / 9789048137091 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich