Probabilistic Forecasts and Optimal Decisions (eBook)
569 Seiten
Wiley (Verlag)
978-1-394-22188-2 (ISBN)
Account for uncertainties and optimize decision-making with this thorough exposition
Decision theory is a body of thought and research seeking to apply a mathematical-logical framework to assessing probability and optimizing decision-making. It has developed robust tools for addressing all major challenges to decision making. Yet the number of variables and uncertainties affecting each decision outcome, many of them beyond the decider's control, mean that decision-making is far from a 'solved problem'. The tools created by decision theory remain to be refined and applied to decisions in which uncertainties are prominent.
Probabilistic Forecasts and Optimal Decisions introduces a theoretically-grounded methodology for optimizing decision-making under conditions of uncertainty. Beginning with an overview of the basic elements of probability theory and methods for modeling continuous variates, it proceeds to survey the mathematics of both continuous and discrete models, supporting each with key examples. The result is a crucial window into the complex but enormously rewarding world of decision theory.
Readers of Probablistic Forecasts and Optimal Decisions will also find:
- Extended case studies supported with real-world data
- Mini-projects running through multiple chapters to illustrate different stages of the decision-making process
- End of chapter exercises designed to facilitate student learning
Probabilistic Forecasts and Optimal Decisions is ideal for advanced undergraduate and graduate students in the sciences and engineering, as well as predictive analytics and decision analytics professionals.
Roman Krzysztofowicz, PhD, is Professor of Systems Engineering in the School of Engineering and Applied Science and Professor of Statistics in the College and Graduate School of Arts and Sciences at the University of Virginia, Charlottesville, USA. He has previously held faculty posts at the University of Arizona and MIT, and his Bayesian Forecast-Decision Theory supplies a unified framework for the design and analysis of probabilistic forecast systems coupled with optimal decision systems.
Account for uncertainties and optimize decision-making with this thorough exposition Decision theory is a body of thought and research seeking to apply a mathematical-logical framework to assessing probability and optimizing decision-making. It has developed robust tools for addressing all major challenges to decision making. Yet the number of variables and uncertainties affecting each decision outcome, many of them beyond the decider s control, mean that decision-making is far from a solved problem . The tools created by decision theory remain to be refined and applied to decisions in which uncertainties are prominent. Probabilistic Forecasts and Optimal Decisions introduces a theoretically-grounded methodology for optimizing decision-making under conditions of uncertainty. Beginning with an overview of the basic elements of probability theory and methods for modeling continuous variates, it proceeds to survey the mathematics of both continuous and discrete models, supporting each with key examples. The result is a crucial window into the complex but enormously rewarding world of decision theory. Readers of Probablistic Forecasts and Optimal Decisions will also find: Extended case studies supported with real-world dataMini-projects running through multiple chapters to illustrate different stages of the decision-making processEnd of chapter exercises designed to facilitate student learning Probabilistic Forecasts and Optimal Decisions is ideal for advanced undergraduate and graduate students in the sciences and engineering, as well as predictive analytics and decision analytics professionals.
Erscheint lt. Verlag | 13.11.2024 |
---|---|
Sprache | englisch |
Themenwelt | Technik ► Bauwesen |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | continuous modeling • Decision Analysis • Decision Theory • discrete-event systems • Discrete Modeling • judgmental assessment • mathematical-logical analysis • Probabilistic Reasoning • rational decision-making • Statistical estimation • Uncertainty |
ISBN-10 | 1-394-22188-6 / 1394221886 |
ISBN-13 | 978-1-394-22188-2 / 9781394221882 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 10,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich