Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning for Low-Latency Communications -  Yuanming Shi,  Youlong Wu,  Jun Zhang,  Yong Zhou,  Yinan Zou

Machine Learning for Low-Latency Communications (eBook)

eBook Download: EPUB
2024 | 1. Auflage
365 Seiten
Elsevier Science (Verlag)
978-0-443-22074-6 (ISBN)
Systemvoraussetzungen
144,99 inkl. MwSt
(CHF 139,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Machine Learning for Low-Latency Communications presents the principles and practice of various deep learning methodologies for mitigating three critical latency components: access latency, transmission latency, and processing latency. In particular, the book develops learning to estimate methods via algorithm unrolling and multiarmed bandit for reducing access latency by enlarging the number of concurrent transmissions with the same pilot length. Task-oriented learning to compress methods based on information bottleneck are given to reduce the transmission latency via avoiding unnecessary data transmission. Lastly, three learning to optimize methods for processing latency reduction are given which leverage graph neural networks, multi-agent reinforcement learning, and domain knowledge. Low-latency communications attracts considerable attention from both academia and industry, given its potential to support various emerging applications such as industry automation, autonomous vehicles, augmented reality and telesurgery. Despite the great promise, achieving low-latency communications is critically challenging. Supporting massive connectivity incurs long access latency, while transmitting high-volume data leads to substantial transmission latency. - Presents the challenges and opportunities of leveraging data and model-driven machine learning methodologies for achieving low-latency communications - Explains the principles and practices of modern machine learning algorithms (e.g., algorithm unrolling, multiarmed bandit, graph neural network, and multi-agent reinforcement learning) for achieving low-latency communications - Gives design, modeling, and optimization methods for low-latency communications that apply appropriate learning methods to solve longstanding problems - Provides full details of the simulation setup and benchmarking algorithms, with downloadable code - Outlines future research challenges and directions

Yong Zhou received the B.Sc. and M.Eng. degrees from Shandong University, Jinan, China, in 2008 and 2011, respectively, and the Ph.D. degree from the University of Waterloo, Waterloo, ON, Canada, in 2015. From Nov. 2015 to Jan. 2018, he worked as a postdoctoral research fellow in the Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada. He is currently an Assistant Professor in the School of Information Science and Technology, ShanghaiTech University, Shanghai, China. He was the track co-chair of IEEE VTC 2020 Fall and 2023 Spring, as well as the general co-chair of IEEE ICC 2022 workshop on edge artificial intelligence for 6G. He co-authored the book Mobile Edge Artificial Intelligence: Opportunities and Challenges (Elsevier 2021). His research interests include 6G communications, edge intelligence, and Internet of Things.
Machine Learning for Low-Latency Communications presents the principles and practice of various deep learning methodologies for mitigating three critical latency components: access latency, transmission latency, and processing latency. In particular, the book develops learning to estimate methods via algorithm unrolling and multiarmed bandit for reducing access latency by enlarging the number of concurrent transmissions with the same pilot length. Task-oriented learning to compress methods based on information bottleneck are given to reduce the transmission latency via avoiding unnecessary data transmission. Lastly, three learning to optimize methods for processing latency reduction are given which leverage graph neural networks, multi-agent reinforcement learning, and domain knowledge. Low-latency communications attracts considerable attention from both academia and industry, given its potential to support various emerging applications such as industry automation, autonomous vehicles, augmented reality and telesurgery. Despite the great promise, achieving low-latency communications is critically challenging. Supporting massive connectivity incurs long access latency, while transmitting high-volume data leads to substantial transmission latency. - Presents the challenges and opportunities of leveraging data and model-driven machine learning methodologies for achieving low-latency communications- Explains the principles and practices of modern machine learning algorithms (e.g., algorithm unrolling, multiarmed bandit, graph neural network, and multi-agent reinforcement learning) for achieving low-latency communications- Gives design, modeling, and optimization methods for low-latency communications that apply appropriate learning methods to solve longstanding problems- Provides full details of the simulation setup and benchmarking algorithms, with downloadable code- Outlines future research challenges and directions
Erscheint lt. Verlag 10.10.2024
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 0-443-22074-3 / 0443220743
ISBN-13 978-0-443-22074-6 / 9780443220746
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 26,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45