Computer Vision – ECCV 2024
Springer International Publishing (Verlag)
978-3-031-73112-9 (ISBN)
- Noch nicht erschienen - erscheint am 22.12.2024
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29-October 4, 2024.
The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
Reinforcement Learning Friendly Vision-Language Model for Minecraft.- Pseudo-RIS: Distinctive Pseudo-supervision Generation for Referring Image Segmentation.- Training-free Composite Scene Generation for Layout-to-Image Synthesis.- Robustness Preserving Fine-tuning using Neuron Importance.- ProxyCLIP: Proxy Attention Improves CLIP for Open-Vocabulary Segmentation.- PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation.- Similarity of Neural Architectures using Adversarial Attack Transferability.- Dual-Rain: Video Rain Removal using Assertive and Gentle Teachers.- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation.- OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web.- AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering.- Reflective Instruction Tuning: Mitigating Hallucinations in Large Vision-Language Models.- Unsupervised Variational Translator for Bridging Image Restoration and High-Level Vision Tasks.- Diffusion Model for Robust Multi-Sensor Fusion in 3D Object Detection and BEV Segmentation.- MeshAvatar: Learning High-quality Triangular Human Avatars from Multi-view Videos.- Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement.- Scene-Conditional 3D Object Stylization and Composition.- GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning.- Revisit Anything: Visual Place Recognition via Image Segment Retrieval.- EcoMatcher: Efficient Clustering Oriented Matcher for Detector-free Image Matching.- DGD: Dynamic 3D Gaussians Distillation.- Semantic Diversity-aware Prototype-based Learning for Unbiased Scene Graph Generation.- DiffuMatting: Synthesizing Arbitrary Objects with Matting-level Annotation.- Self-Guided Generation of Minority Samples Using Diffusion Models.- DEVIAS: Learning Disentangled Video Representations of Action and Scene.- AD3: Introducing a score for Anomaly Detection Dataset Difficulty assessment using VIADUCT dataset.- RoomTex: Texturing Compositional Indoor Scenes via Iterative Inpainting.
Erscheint lt. Verlag | 22.12.2024 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science |
Zusatzinfo | LXXXV, 484 p. 180 illus., 179 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Artificial Intelligence • Computer Networks • Computer systems • computer vision • Education • Human-Computer Interaction (HCI) • Image Analysis • image coding • Image Processing • image reconstruction • Image Segmentation • learning • machine learning • Object recognition • pattern recognition • reconstruction • Signal Processing • Software engineering |
ISBN-10 | 3-031-73112-3 / 3031731123 |
ISBN-13 | 978-3-031-73112-9 / 9783031731129 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich