Dynamic Image Analysis of Granular Materials (eBook)
XVIII, 353 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-47534-4 (ISBN)
This book explores the effectiveness of Dynamic Image Analysis (DIA) in granulometry studies of sand, and presents criteria for soil characterization using DIA, including test parameters, specimen size, efficacy in gap-graded soils, and its limitations. DIA is a modern experimental technique used to analyze and classify particulate materials based on their size, shape, and other morphological properties. This method employs a high-frame-rate camera to capture images of individual sand particles, which have been transported and separated using various techniques.
DIA generates both particle size and shape information by analyzing thousands to millions of particles, providing a quantitative statistical description of grain size and shape distribution within the specimen. The manuscript also offers a comprehensive examination of 2D and 3D particle size and shape descriptors. It demonstrates that there is no correlation between size and shape parameters in many sands and that shape descriptors can be reduced to four independent parameters representing sand granulometry at different scales. Additionally, the use of DIA in exploring the depositional history of two complex calcareous sands is presented.
The manuscript presents the properties of 30 representative sands, including size and shape parameters, and fits them to statistical distributions. The investigated soils encompass both natural and machine-sorted materials, particles with regular and irregular shapes, as well as siliceous and calcareous sands.
Physical granulometry of sand particles is compared using 2D, 3D DIA, and micro-computed tomography (µCT). The work demonstrates that DIA offers significant advantages in terms of efficiency for 3D shape analysis while providing an adequate representation of particle sizes and shapes of most sands.
Finally, the manuscript integrates classical geotechnical engineering with computer vision and artificial intelligence. Size and shape descriptors are utilized for sand classification through machine learning models. This work represents a crucial step toward the automatic machine classification of soils, potentially enabling on-site classification using smartphones equipped with high-resolution cameras.
Magued Iskander, Ph.D., PE, F.ASCE, is a civil engineering professor at New York University (NYU) Tandon School of Engineering (formerly Polytechnic University/Institute, aka. Brooklyn Poly), where he has also served as the Chair of the Civil and Urban Engineering Department since 2013. Dr. Iskander holds a B.Sc. degree in Civil Engineering from Alexandria University and a Ph.D. degree in Civil (Geotechnical) Engineering from the University of Texas at Austin. He is a licensed professional engineer (PE) in the States of New York, New Jersey, and Wisconsin.
Dr. Iskander is an internationally recognized geotechnical engineering expert. He authored 5 books, edited 11 books, and published over 250 papers including 100+ refereed journal articles dealing with foundations, experimental modeling with transparent soils, rapid penetration into granular media, seismic earth pressure, pedagogy, offshore geotechnics, urban geotechnology, and particle granulotremetry.
Linzhu Li, Ph.D., is an assistant professor at Bradley University, Department of Civil and Construction Engineering. Dr. Li holds a bachelor of Engineering degree in Petroleum Exploration Technology and Engineering from Southwest Petroleum University in China. She received her Master's degree in Geotechnical Engineering from the Illinois Institute of Technology (IIT) and a Ph.D. Degree in Civil (Geotechnical Engineering) from the New York University (NYU).
Dr. Li's research area includes Application of Dynamic Image Analysis (DIA) for granular sand particle size and shape analysis and Visualization of flow through porous transparent granular materials. She published 9 journal articles dealing with image processing, machine learning, and computational fluid mechanics in geotechnology. She also has been invited to make technical presentations at a variety of professional meetings and universities.
Dr. Li is an affiliate member ofthe American Society of Civil Engineers (ASCE).
Erscheint lt. Verlag | 18.5.2024 |
---|---|
Reihe/Serie | Springer Series in Geomechanics and Geoengineering |
Zusatzinfo | XVIII, 353 p. 287 illus., 258 illus. in color. |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie |
Technik ► Bauwesen | |
Schlagworte | calcareous • Dynamic Image Analysis • granular • Granular Materials • Particle Granulometry • particle shape • powders • Sphericity |
ISBN-10 | 3-031-47534-8 / 3031475348 |
ISBN-13 | 978-3-031-47534-4 / 9783031475344 |
Haben Sie eine Frage zum Produkt? |
Größe: 24,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich