Using 137Cs Resampling Method to Estimate Mean Soil Erosion Rates for Selected Time Windows (eBook)
IX, 137 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-52807-1 (ISBN)
This book provides guidelines for using a new approach of resampling the Cs-137 radionuclide tracer which is used to estimate soil erosion rates. The Cs-137 resampling approach will improve significantly the use of the Cs-137 method for assessment of soil erosion, because resampling the radionuclide repeatedly (at least two times, but more sampling campaigns are possible) allows to avoid several methodological difficulties associated with Cs-137 method, namely the problems with small-scale spatial heterogeneity, the question of representativeness of reference site, reference samples, and inappropriate time extent of evaluated period. All these methodological problems are very important for reliability and accuracy of erosion rates estimated by Cs-137 method. If using single sampling approach, the small-scale spatial heterogeneity can be overcome by high number of sampling points, but this is time and labour demanding solution increasing the expenses of the erosion research. The representativeness of reference site is evaluated usually on the basis of expert judgement and knowledge of land use history of studied area, but this approach is often uncertain because the expert judgement can be subjective and the data on land use history is often not sufficient. Further, in many areas an appropriate reference site is not available, what limits the territorial extent of using Cs-137 method. The resampling approach offers its second sampling to be done in a proximate vicinity of the same points sampled during the first sampling campaign. A great advantage is the possibility to decide how long time windows should be investigated. Choosing the time schedule of first and second sampling allows to shorten the time window and adjust it to the study objectives. This is a great improvement of the Cs-137 method, because the time period since the Cs-137 fallout is still growing and thus if using the single sampling approach the results refer to still longer and longer time window(since the Cs-137 fallout until the sampling time), and this period (recently ca 60 years assuming the maximum Cs-137 fallout in 1963) is too long to represent stable land use, because land uses are changing over the time and having the same land use over six decades is rather rare. The improvement of Cs-137 method achieved by resampling approach is significantly contributing to understanding the erosion dynamics and estimating its rates under changing environmental conditions (such as land uses, weather), and it will bring a significant benefit to soil conservation programmes, because Cs-137 method is indispensable for assessing the medium and long term soil erosion rates, and this information is among the basic inputs needed for planning and designing soil conservation measures.
Paolo Porto is currently Associate Professor in Agricultural Hydraulics and Torrent control, at the University Mediterranea of Reggio Calabria (Italy), and Professor in the field of Physical Geography and Geomorphology at the Kazimierz Wielki University of Bydgoszcz (Poland). He obtained in 1989 his Master degree in Forest Sciences at the University Mediterranea, and he completed his PhD in 1995 in Catchment hydrology and torrent control at the University of Bari (Italy). His research activity was developed with the support of several fellowships spent at the Dept of Civil Engineering of the Colorado State University, USA (6 months), at the Department of Engineering and Agro-Forest Technologies of the University of Palermo, Italy (2 years), at the National Research Council of Cosenza, Italy (4 years), and at the Dept of Geography of the University of Exeter, UK (3 years) where he was appointed as 'Honorary Member' from February 2014 to January 2017. His research activity (Scopus H-index=28) in soil erosion, radionuclides, hydrology, and torrent control is well documented in over 100 papers published in international and national journals. Paolo Porto covers also the role of President (2021-2025) of the International Commission on Continental Erosion (IAHS/ICCE), and Vice-President (2022-2025) of the International Association of Sediment and Water Sciences (IASWS).
Lee Kheng Heng has a PhD in soil science from Massey University, New Zeeland, and has more than 30 years' experience in soil-plant-water interaction research, agricultural water management, water use efficiency, integrated nutrient-water interactions and diffuse pollution control for sustainable agricultural production systems.
Over nearly 24 years, Dr Heng worked at the Soil and Water Management & CropNutrition (SWMCN) Subprogramme, in the Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, in Vienna, Austria. Since 2014, she was the Head of SWMCN Section, developing the overall strategy of the Soil Subprogramme. Dr Heng recently (October 2023) retired from the IAEA. During her working period at IAEA she coordinated a number of research project on various aspects of soil water management, developing new techniques of soil moisture measurement such as the cosmic ray neutron sensor (CRNS); using stable isotopes for identification of water pollution from agriculture; using fallout radionuclides (FRN) for assessment of soil erosion, etc. Further she was involved in a great number of technical cooperation projects transferring the nuclear techniques to developing countries, as well as giving lectures at IAEA training activities on new nuclear techniques. The work assists scientists in IAEA Member States to develop, validate and disseminate a range of soil, water and crop management technology packages through the use of nuclear and nuclear-related techniques.Her work span over all continents with special focus on tropical areas of Asia, Africa and Americas. She is the author and co-author of a huge number of research papers and several monographies, especially the methodological books on various aspects of nuclear techniques published by Springer and IAEA TecDoc series.
She was also working at FAO, Rome, Italy, on AquaCrop model, a crop water productivity model, simulating yield response to water of herbaceous crops, and the effects of environment and management on crop production and food security.Dr Heng won several awards for her professional achievements including the IAEA Superior Achievement Award, IAEA Merit Awards, IAEA Merit Promotion and the USDA-Agricultural Research Service (ARS) Outstanding Sustained Effort Technology Transfer Award for Outstanding Work in Technology Transfer to Users.
Before joining the IAEA, Dr Heng worked as a research associate at the University of Melbourne, Australia. Prior to that she worked as a Soil and Environmental Scientist at Landcare Crown Research Institute in New Zealand.
Erscheint lt. Verlag | 13.5.2024 |
---|---|
Reihe/Serie | Environmental Science and Engineering |
Zusatzinfo | IX, 137 p. 65 illus., 34 illus. in color. |
Sprache | englisch |
Themenwelt | Technik ► Bauwesen |
Schlagworte | 137Cs • caesium-137 • Cs-137 • Cs-137 method • erosion tracer • fallout radionuclides • FRN • radionuclide tracer • sediment yield • Soil conservation • Soil erosion • soil erosion rates |
ISBN-10 | 3-031-52807-7 / 3031528077 |
ISBN-13 | 978-3-031-52807-1 / 9783031528071 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich