Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Feature and Dimensionality Reduction for Clustering with Deep Learning (eBook)

eBook Download: PDF
2023 | 1st ed. 2024
XI, 268 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-48743-9 (ISBN)

Lese- und Medienproben

Feature and Dimensionality Reduction for Clustering with Deep Learning - Frederic Ros, Rabia Riad
Systemvoraussetzungen
117,69 inkl. MwSt
(CHF 114,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents an overview of recent methods of feature selection and dimensionality reduction that are based on Deep Neural Networks (DNNs) for a clustering perspective, with particular attention to the knowledge discovery question. The authors first present a synthesis of the major recent influencing techniques and 'tricks' participating in recent advances in deep clustering, as well as a recall of the main deep learning architectures. Secondly, the book highlights the most popular works by 'family' to provide a more suitable starting point from which to develop a full understanding of the domain. Overall, the book proposes a comprehensive up-to-date review of deep feature selection and deep clustering methods with particular attention to the knowledge discovery question and under a multi-criteria analysis. The book can be very helpful for young researchers, non-experts, and R&D AI engineers.




Frederic Ros has an engineering degree in Microelectronics and Automation, a master's in Robotics from Montpellier University, and a Ph.D. from ENGREF (Ecole Nationale du Genie Rural des Eaux et Forets, now AgroParistech), Paris. He began his career in 1991 as a research scientist working on the field of image analysis for robotics and artificial systems from IRSTEA (now INRAE). He managed the vision activity in GEMALTO (now THALES) for 14 years which is the world leader in the smart card industry. He was particularly involved in applied developments (related to machine vision, AI, data analysis, fuzzy logic, and supervised classification algorithms) with the aim of providing adaptive and self-tuning systems corresponding to the growing complexity of industrial processes and especially multidisciplinary interactions. Professor at Orleans University, he has been an associate researcher at PRISME laboratory (signal and image processing) for 15 years, focusing his research on machine learning algorithms in the big data context. In parallel, he has headed an innovation park for 12 years and recently designed and structured a digital start-up incubator.

 

Rabia Riad received the Habilitation degree (HDR) in 2022, from the Ibn Zohr University - Morocco, and the Ph.D. degree in Computer Science from the University of Orleans - France, in 2015. He was a Postdoctoral Fellow at the University of Orleans between 2016 and 2018. Since 2018, he has been with Ibn Zohr University as an Assistant Professor, where he is currently an Associate Professor, since 2022. His research interests include computer vision, artificial intelligence, data analysis, and supervised and unsupervised classification algorithms.


Erscheint lt. Verlag 21.12.2023
Reihe/Serie Unsupervised and Semi-Supervised Learning
Unsupervised and Semi-Supervised Learning
Zusatzinfo XI, 268 p. 1 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte contrastive learning • Deep clustering • Deep feature selection • Pretext task • Pseudo-labeling • Self-Supervision
ISBN-10 3-031-48743-5 / 3031487435
ISBN-13 978-3-031-48743-9 / 9783031487439
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 34,10
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
CHF 34,10