Graph Database and Graph Computing for Power System Analysis (eBook)
512 Seiten
John Wiley & Sons (Verlag)
978-1-119-90388-8 (ISBN)
Understand a new way to model power systems with this comprehensive and practical guide
Graph databases have become one of the essential tools for managing large data systems. Their structure improves over traditional table-based relational databases in that it reconciles more closely to the inherent physics of a power system, enabling it to model the components and the network of a power system in an organic way. The authors' pioneering research has demonstrated the effectiveness and the potential of graph data management and graph computing to transform power system analysis.
Graph Database and Graph Computing for Power System Analysis presents a comprehensive and accessible introduction to this research and its emerging applications. Programs and applications conventionally modeled for traditional relational databases are reconceived here to incorporate graph computing. The result is a detailed guide which demonstrates the utility and flexibility of this cutting-edge technology.
The book's readers will also find:
* Design configurations for a graph-based program to solve linear equations, differential equations, optimization problems, and more
* Detailed demonstrations of graph-based topology analysis, state estimation, power flow analysis, security-constrained economic dispatch, automatic generation control, small-signal stability, transient stability, and other concepts, analysis, and applications
* An authorial team with decades of experience in software design and power systems analysis
Graph Database and Graph Computing for Power System Analysis is essential for researchers and academics in power systems analysis and energy-related fields, as well as for advanced graduate students looking to understand this particular set of technologies.
Renchang Dai, PhD, is a Consulting Analyst and Project Manager for Puget Sound Energy, Washington, USA. He is a founding member of GE Energy Consluting Smart Grid CoE and an IEEE Senior Member, and has worked and published extensively on graph based power system analysis software. Guangyi Liu, PhD, is Chief Scientist and Smart Grid CoE at Envision Digital, USA. He is an IEEE Senior member and has extensive experience developing software for graph-based power system analysis across numerous applications.
Preface
Acknowledgements
Section I:
Chapter 1: Introduction
Chapter 2: Graph Database
Chapter 3: Graph Parallel Computing
Chapter 4: Large-Scale Algebraic Equations
Chapter 5: High Dimensional Differential Equations
Chapter 6: Optimization Problems
Chapter 7: Graph-based Machine Learning
Section II:
Chapter 8: Power Systems Modeling
Chapter 9: State Estimation Graph Computing
Chapter 10: Power Flow Graph Computing
Chapter 11: Contingency Analysis Graph Computing
Chapter 12: Economic Dispatch and Unit Commitment
Chapter 13: Automatic Generation Control
Chapter 14: Small-signal Stability
Chapter 15: Transient Stability
Chapter 16: Graph-based Deep Reinforcement Learning on Overload Control
Chapter 17: Conclusions
Appendix
Index
Erscheint lt. Verlag | 28.9.2023 |
---|---|
Reihe/Serie | IEEE Press Series on Power Engineering | IEEE Press Series on Power Engineering |
Sprache | englisch |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
Schlagworte | Electric Power Electronics • electric power systems • Elektrische Energietechnik • Energie • Energietechnik • Energy • Leistungselektronik • Power Technology & Power Engineering |
ISBN-10 | 1-119-90388-2 / 1119903882 |
ISBN-13 | 978-1-119-90388-8 / 9781119903888 |
Haben Sie eine Frage zum Produkt? |
Größe: 16,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich