Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning in 2D Materials Science -

Machine Learning in 2D Materials Science

Buch | Hardcover
238 Seiten
2023
CRC Press (Verlag)
978-0-367-67820-3 (ISBN)
CHF 199,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book provides broad coverage of data science and ML fundamentals to materials science researchers so that they can confidently leverage these techniques in their research projects.
Data science and machine learning (ML) methods are increasingly being used to transform the way research is being conducted in materials science to enable new discoveries and design new materials. For any materials science researcher or student, it may be daunting to figure out if ML techniques are useful for them or, if so, which ones are applicable in their individual contexts, and how to study the effectiveness of these methods systematically.

KEY FEATURES



Provides broad coverage of data science and ML fundamentals to materials science researchers so that they can confidently leverage these techniques in their research projects
Offers introductory material in topics such as ML, data integration, and 2D materials
Provides in-depth coverage of current ML methods for validating 2D materials using both experimental and simulation data, researching and discovering new 2D materials, and enhancing ML methods with physical properties of materials
Discusses customized ML methods for 2D materials data and applications and high-throughput data acquisition
Describes several case studies illustrating how ML approaches are currently leading innovations in the discovery, development, manufacturing, and deployment of 2D materials needed for strengthening industrial products
Gives future trends in ML for 2D materials, explainable AI, and dealing with extremely large and small, diverse datasets

Aimed at materials science researchers, this book allows readers to quickly, yet thoroughly, learn the ML and AI concepts needed to ascertain the applicability of ML methods in their research.

Parvathi Chundi, PhD is Professor of Computer Science, University of Nebraska-Omaha. Prior to Omaha, Dr. Chundi was with Agilent Technologies and HP Labs, both in Palo Alto, CA. Venkataramana Gadhamshetty, PhD, PE is Professor of Environmental Engineering in Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology. He is a cofounder of 2D materials for Biofilm Science Engineering and Technology (2DBEST) center and 2D materials laboratory (2DML) at SDSM&T. Bharat K. Jasthi, PhD is Associate Professor, Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology. Dr. Jasthi has research expertise in the areas of microstructural modification, structure property correlation, new alloy development, powder metallurgy, additive manufacturing, and development of engineered surface thin films and coatings for a wide range of applications. Carol Lushbough, MA is an Emeritus Professor of Computer Science, University of South Dakota.

Chapter 1 Introduction to Machine Learning for Analyzing Material–Microbe Interactions

Venkataramana Gadhamshetty, Parvathi Chundi, and Bharat K. Jasthi

Chapter 2 Introduction to 2D Materials

Roberta Amendola and Amit Acharjee

Chapter 3 An Overview of Machine Learning

Dilanga Abeyrathna, Mahadevan Subramaniam, and Parvathi Chundi

Chapter 4 Discovery of 2D Materials with Machine Learning

Md Mahmudul Hasan, Rabbi Sikder, Bharat K. Jasthi, Etienne Z. Gnimpieba, and Venkataramana Gadhamshetty

Chapter 5 Bacterial Image Segmentation through Deep Learning Approach

Ejan Shakya and Pei-Chi Huang

Chapter 6 Self-Supervised Learning-Based Classification of Scanning Electron Microscope Images of Biofilms

Md Ashaduzzaman and Mahadevan Subramaniam

Chapter 7 Quorum Sensing Mechanisms, Biofilm Growth, and Microbial Corrosion Effects of Bacterial Species

Vaibhav Handa, Saurabh Dhiman, Kalimuthu Jawaharraj, Vincent Peta, Alain Bomgni, Etienne Z. Gnimpieba, and Venkataramana Gadhamshetty

Chapter 8 Data-Driven 2D Material Discovery Using Biofilm Data and Information Discovery System (Biofilm-DIDS)

Tuyen Do, Alain Bomgni, Shiva Aryal, Venkataramana Gadhamshetty, Diing D. M. Agany, Tim Hartman, Bichar D. Shrestha Gurung, Carol M. Lushbough, and Etienne Z. Gnimpieba

Erscheinungsdatum
Zusatzinfo 11 Tables, black and white; 12 Line drawings, color; 3 Line drawings, black and white; 53 Halftones, color; 17 Halftones, black and white; 20 Illustrations, color; 65 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 453 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-367-67820-9 / 0367678209
ISBN-13 978-0-367-67820-3 / 9780367678203
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch (2023)
Springer Fachmedien (Verlag)
CHF 46,15