Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Collaborative Knowledge Management Through Product Lifecycle -  Gongzhuang Peng,  Hongwei Wang

Collaborative Knowledge Management Through Product Lifecycle (eBook)

A Computational Perspective
eBook Download: PDF
2023 | 1. Auflage
XVI, 283 Seiten
Springer Nature Singapore (Verlag)
978-981-19-9626-9 (ISBN)
Systemvoraussetzungen
181,89 inkl. MwSt
(CHF 177,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book not only presents the state-of-the-art research on knowledge modelling, knowledge retrieval and knowledge reuse, but also elaborates the Collaborative Knowledge Management (CKM) paradigm and the architecture for the next generation of knowledge management systems. Although knowledge management has been extensively studied, particularly in the fields of business management and engineering design, there is a lack of systematic methodologies for addressing the integrated and collaborative dimension of knowledge management during the collaborative process of designing and developing complex systems, products, processes and services. The rapid development of information technologies, together with their applications in engineering and management, has laid the foundation for a Collaborative Knowledge Management (CKM) paradigm. The book specifically discusses this paradigm from a computational perspective.

By exploring specific research findings underpinning further CKM research and applications and describing methods related to hot research topics and new research areas, the book appeals to professionals, researchers and graduate students who are interested in knowledge management and related topics and who have a basic understanding of information technologies, computational methods, and knowledge management.



Dr. Hongwei Wang is a tenured full professor with Zhejiang University and the University of Illinois at Urbana-Champaign Joint Institute where he serves as the vice dean in research and academic lead in intelligent manufacturing. He received the B.S. degree in information technology and instrumentation from Zhejiang University, China, in 2004, the M.S. degree in control science and engineering from Tsinghua University, China, in 2007, and completed the Ph.D. degree in engineering design from the University of Cambridge, in 2010. Prio to joining Zhejiang University, he was a Senior Lecturer in engineering design with the University of Portsmouth, the United Kingdom. His research interests include knowledge engineering, industrial knowledge graph, intelligent and collaborative systems, and data-driven fault diagnosis. His research in these areas has been published in over 120 peer-reviewed papers in well-established journals and international conferences. He has delivered two keynote speeches and has won four best paper awards in international conferences.

Dr. Gongzhuang Peng is an assistant professor with the Engineering Research Institute, University of Science and Technology Beijing. He received the B.S. degree from School of Automation Science and Electrical Engineering, Beihang University, Beijing, China, in 2012, and the Ph.D. degree from the Department of Automation, Tsinghua University, Beijing, China, in 2018. His research interest concerns knowledge management and smart manufacturing. He has published near 40 peer-reviewed papers in international journals and international conferences, and has won two best paper awards in international conferences.



This book not only presents the state-of-the-art research on knowledge modelling, knowledge retrieval and knowledge reuse, but also elaborates the Collaborative Knowledge Management (CKM) paradigm and the architecture for the next generation of knowledge management systems. Although knowledge management has been extensively studied, particularly in the fields of business management and engineering design, there is a lack of systematic methodologies for addressing the integrated and collaborative dimension of knowledge management during the collaborative process of designing and developing complex systems, products, processes and services. The rapid development of information technologies, together with their applications in engineering and management, has laid the foundation for a Collaborative Knowledge Management (CKM) paradigm. The book specifically discusses this paradigm from a computational perspective.By exploring specific research findings underpinning further CKM research and applications and describing methods related to hot research topics and new research areas, the book appeals to professionals, researchers and graduate students who are interested in knowledge management and related topics and who have a basic understanding of information technologies, computational methods, and knowledge management.
Erscheint lt. Verlag 1.3.2023
Zusatzinfo XVI, 283 p. 172 illus., 122 illus. in color.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Software Entwicklung User Interfaces (HCI)
Mathematik / Informatik Informatik Theorie / Studium
Informatik Weitere Themen CAD-Programme
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik
Wirtschaft Betriebswirtschaft / Management Wirtschaftsinformatik
Schlagworte Collaborative Knowledge Management Knowledge Modelling • Engineering design • Knowledge Management System • Knowledge Modelling • Knowledge Retrieval • Product Lifecycle
ISBN-10 981-19-9626-1 / 9811996261
ISBN-13 978-981-19-9626-9 / 9789811996269
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
CHF 48,75
Achieve data excellence by unlocking the full potential of MongoDB

von Marko Aleksendrić; Arek Borucki; Leandro Domingues …

eBook Download (2024)
Packt Publishing (Verlag)
CHF 52,75