Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents
Springer International Publishing (Verlag)
978-3-031-29669-7 (ISBN)
Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.
- 1. Introduction. - 2. Preliminaries. - Part I Main Part. - 3. Variable Bochner-Lebesgue Spaces. - 4. Solenoidal Variable Bochner-Lebesgue Spaces. - 5. Existence Theory for Lipschitz Domains. - Part II Extensions. - 6. Pressure Reconstruction. - 7. Existence Theory for Irregular Domains. - 8. Existence Theory for p- < 2. - 9. Appendix.
"This book is essentially based on the author's doctoral thesis ... . The book also contains an appendix and references. ... The book could be used by graduate students and researchers working on such problems." (Gheorghe Morosanu, zbMATH 1526.35002, 2024)
Erscheinungsdatum | 13.08.2023 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XIII, 358 p. 11 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 565 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Technik ► Maschinenbau | |
Schlagworte | Electrorheological Fluids • Existence of Weak Solutions • Pseudo-monotone Operator Theory • Variable Exponent Bochner-Lebesgue Spaces • variable exponent Lebesgue spaces • Variable Exponent Sobolev Spaces |
ISBN-10 | 3-031-29669-9 / 3031296699 |
ISBN-13 | 978-3-031-29669-7 / 9783031296697 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich