Assembly Line Balancing under Uncertain Task Time and Demand Volatility (eBook)
XII, 152 Seiten
Springer Nature Singapore (Verlag)
978-981-19-4215-0 (ISBN)
This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.
Dr. Yuchen Li received his B.E. degrees in Systems Engineering from Beihang University, Beijing, China, in 2010, and the M.Sc. degree in Operations Research from Columbia University, New York, in 2012, and the Ph.D. degree in Industrial Engineering from Rutgers University, New Brunswick, in 2016. Since Nov. 2016, Dr. Li has been with the School of Economics and Management, Beijing University of Technology.
Dr. Yuchen Li is broadly interested in combinatorial optimization in manufacturing with particular emphasis on assembly line balancing area. His research generally involves the design of the intelligent production systems, applied mathematical modeling of manufacturing and industrial systems, and algorithm development.
This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.
Erscheint lt. Verlag | 10.9.2022 |
---|---|
Reihe/Serie | Engineering Applications of Computational Methods | Engineering Applications of Computational Methods |
Zusatzinfo | XII, 152 p. 44 illus., 7 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Technik ► Maschinenbau | |
Schlagworte | Assembly line balancing • Belief Reliability • Capacitated lot-sizing • Mask production • Rebalancing policies • Simulated annealing algorithm • Uncertain demand • Uncertainty • Valid constraints |
ISBN-10 | 981-19-4215-3 / 9811942153 |
ISBN-13 | 978-981-19-4215-0 / 9789811942150 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich