Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Explanatory Model Analysis - Przemyslaw Biecek, Tomasz Burzykowski

Explanatory Model Analysis

Explore, Explain, and Examine Predictive Models
Buch | Softcover
324 Seiten
2022
Chapman & Hall/CRC (Verlag)
978-0-367-69392-3 (ISBN)
CHF 79,95 inkl. MwSt
This book is about a new field in statistical machine learning – about interpretation and explanation of predictive models. Machine learning models are widely used in predictive modelling, both for regression and classification.
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Przemyslaw Biecek is a professor in human-oriented machine learning at the Warsaw University of Technology and Principal Data Scientist in Samsung R&D Institute Poland. His main research project is DrWhy.AI - tools and methods for exploration, explanation, visualisation, and debugging of predictive models. Tomasz Burzykowski is professor of biostatistics at Hasselt University and Vice-President for Research at International Drug Development Institute (IDDI). He has published extensively on applications of statistics in medicine and biology.

I. Introduction 1. Introduction. 2. Model Development. 3. Do-it-yourself. 4. Datasets and models. II. Instance Level. 5. Introduction to Instance-level Exploration. 6. Break-down Plots for Additive Attributions. 7. Break-down Plots for Interactions. 8. Shapley Additive Explanations (SHAP) for Average Attributions. 9. Local Interpretable Model-agnostic Explanations (LIME). 10. Ceteris-paribus Profiles. 11. Ceteris-paribus Oscillations. 12. Local-diagnostics Plots. 13. Summary of Instance-level Exploration. III. Dataset Level. 14. Introduction to Dataset-level Exploration. 15. Model-performance Measures. 16. Variable-importance Measures. 17. Partial-dependence Profiles. 18. Local-dependence and Accumulated-dependence Profiles. 19. Residual Diagnostics Plots. 20. Summary of Model-level Exploration. IV. Use-cases. 21. FIFA 19.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Data Science Series
Sprache englisch
Maße 156 x 234 mm
Gewicht 460 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-367-69392-5 / 0367693925
ISBN-13 978-0-367-69392-3 / 9780367693923
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20