Nonlinear Filters (eBook)
304 Seiten
John Wiley & Sons (Verlag)
978-1-119-07815-9 (ISBN)
Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource
Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms.
Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy:
* Organization that allows the book to act as a stand-alone, self-contained reference
* A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines
* A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter
* A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values
* A concise tutorial on deep learning and reinforcement learning
* A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation
* Guidelines for constructing nonparametric Bayesian models from parametric ones
Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.
Peyman Setoodeh, PhD, is Visiting Professor with the Centre for Mechatronics and Hybrid Technologies (CMHT) at McMaster University. He is a Senior Member of the IEEE. Saeid Habibi, PhD, is Professor and former Chair of the Department of Mechanical Engineering and the Director of the Centre for Mechatronics and Hybrid Technologies (CMHT) at McMaster University. He is a Fellow of the ASME and the CSME as well as a Canada Research Chair and a Senior NSERC Industrial Research Chair. Simon Haykin, PhD, is Distinguished University Professor with the Department of Electrical and Computer Engineering and the Director of the Cognitive Systems Laboratory (CSL) at McMaster University. He is a Fellow of the IEEE and the Royal Society of Canada. He is a recipient of the Henry Booker Gold Medal from the International Union of Radio Science, the IEEE James H. Mulligan Jr. Education Medal, and the IEEE Denis J. Picard Medal for Radar Technologies and Applications.
Erscheint lt. Verlag | 4.3.2022 |
---|---|
Sprache | englisch |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
Schlagworte | Control Systems Technology • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mustererkennung • Pattern Analysis • Regelungstechnik • Signal Processing • Signalverarbeitung |
ISBN-10 | 1-119-07815-6 / 1119078156 |
ISBN-13 | 978-1-119-07815-9 / 9781119078159 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich