Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning - Qiang Ren, Yinpeng Wang, Yongzhong Li, Shutong Qi

Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning (eBook)

eBook Download: PDF
2021 | 1st ed. 2022
XVIII, 125 Seiten
Springer Singapore (Verlag)
978-981-16-6261-4 (ISBN)
Systemvoraussetzungen
128,39 inkl. MwSt
(CHF 125,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book investigates in detail the deep learning (DL) techniques in electromagnetic (EM) near-field scattering problems, assessing its potential to replace traditional numerical solvers in real-time forecast scenarios. Studies on EM scattering problems have attracted researchers in various fields, such as antenna design, geophysical exploration and remote sensing. Pursuing a holistic perspective, the book introduces the whole workflow in utilizing the DL framework to solve the scattering problems. To achieve precise approximation, medium-scale data sets are sufficient in training the proposed model. As a result, the fully trained framework can realize three orders of magnitude faster than the conventional FDFD solver. It is worth noting that the 2D and 3D scatterers in the scheme can be either lossless medium or metal, allowing the model to be more applicable. This book is intended for graduate students who are interested in deep learning with computational electromagnetics, professional practitioners working on EM scattering, or other corresponding researchers.

Qiang Ren received the B.S. and M.S. degrees both in electrical engineering from Beihang University, Beijing, China, and Institute of Acoustics, Chinese Academy of Sciences, Beijing, China in 2008 and 2011, respectively, and the PhD degree in Electrical Engineering from Duke University, Durham, NC, in 2015. From 2016 to 2017, he was a postdoctoral researcher with the Computational Electromagnetics and Antennas Research Laboratory (CEARL) of the Pennsylvania State University, University Park, PA. In Sept 2017, he joined the School of Electronics and Information Engineering, Beihang University, Beijing, China, as an 'Excellent Hundred' Associate Professor.

Dr. Ren is the recipient of the Young Scientist Award of 2018 International Applied Computational Electromagnetics Society (ACES) Symposium in China. He serves as the Associate Editor of ACES Journal and Microwave and Optical Technology Letters (MOTL), and also serves as a reviewer for more than 30 journals. His current research interests include numerical modeling methods for complex media, multiscale and multiphysics problems, inverse scattering, deep learning and parallel computing. He has published more than 70 papers on the journals and conferences.

 

Yinpeng Wang received the B.S. degree in Electronic and Information Engineering from Beihang University in 2020, where he is currently pursuing his M.S. degree in Electronic Science and Technology. From 2017 to 2018, he was a researcher at the Physical Experiment Center, Beihang University. In 2018, he worked as a research assistant in the Spintronics Interdisciplinary Center. Since 2018, he has been a member of the Institute of EMC Technology.

Mr. Wang focuses on the research of electromagnetic scattering, inverse scattering, heat transfer, computational multi-physical fields, and deep learning. Since 2018, Mr. Wang has published 8 peer-reviewed technical papers in international journals and conferences. He serves as a reviewer for Springer, IOP and IEEE journals. He was a recipient of the Outstanding Freshmen Scholarship and the First Prize of the Academic Scholarship.

 

Yongzhong Li received the B.S. degree in Electronic and Information Engineering from Beihang University in 2020. He is now pursing the MASc degree in Electrical and Computer Engineering, University of Toronto. From 2018 to 2020, he has been a research assistant of the Institute of EMC Technology. From 2020 to 2021, he worked as a research assistant in the Physics department at the Hong Kong University of Science and Technology. Now he is a graduate student at University of Toronto.

Mr. Li focus on the research of numerical modeling for multiphysics and multiscale problem, machine learning and wave functional material. Since 2018, Mr. Li has published 6 peer-reviewed technical papers in international journals and conferences. He serves as a Reviewer for IOP journals. He was a recipient of the Outstanding Graduate in 2020.

 

Shutong Qi received the B.S. degree in Electronic and Information Engineering from Beihang University in 2020. He is pursing the Ph.D. degree in Electrical and Computer Engineering, University of Toronto. From 2018 to 2020, he has been a research assistant of the Institute of EMC Technology. Now he is a graduate student of University of Toronto.

Mr. Qi focus on the research of finite-difference method, electromagnetic scattering, deep learning and human-computer interaction. Since 2018, Mr. Qi has published 7 peer-reviewed technical papers in international journals and conferences. He was a recipient of the Outstanding Graduate in 2020.


This book investigates in detail the deep learning (DL) techniques in electromagnetic (EM) near-field scattering problems, assessing its potential to replace traditional numerical solvers in real-time forecast scenarios. Studies on EM scattering problems have attracted researchers in various fields, such as antenna design, geophysical exploration and remote sensing. Pursuing a holistic perspective, the book introduces the whole workflow in utilizing the DL framework to solve the scattering problems. To achieve precise approximation, medium-scale data sets are sufficient in training the proposed model. As a result, the fully trained framework can realize three orders of magnitude faster than the conventional FDFD solver. It is worth noting that the 2D and 3D scatterers in the scheme can be either lossless medium or metal, allowing the model to be more applicable. This book is intended for graduate students who are interested in deep learning with computational electromagnetics, professional practitioners working on EM scattering, or other corresponding researchers.
Erscheint lt. Verlag 20.10.2021
Zusatzinfo XVIII, 125 p. 106 illus., 90 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Elektrotechnik / Energietechnik
Schlagworte computational electromagnetics • Deep learning • Electromagnetic Forward Scattering Solver • Electromagnetic Scattering • Finite-Difference Frequency-Domain method • forward modeling • u-net
ISBN-10 981-16-6261-4 / 9811662614
ISBN-13 978-981-16-6261-4 / 9789811662614
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 18,25