Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Biopolymer-Based Food Packaging -

Biopolymer-Based Food Packaging

Innovations and Technology Applications
Buch | Hardcover
512 Seiten
2022
John Wiley & Sons Inc (Verlag)
978-1-119-70225-2 (ISBN)
CHF 288,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Biopolymer-Based Food Packaging Explore the latest developments and advancements in biopolymer-based food packaging

In Biopolymer-Based Food Packaging: Innovations and Technology Applications, a team of accomplished researchers delivers a complete, systematic, and sequential account of the contemporary developments in the application of biopolymers for sustainable food packaging. This book introduces the fabrication, characterization as well as benefits arising from the enhanced functionalities of biopolymer-based food packaging materials.

The authors introduce various polysaccharide, protein, and microbial polymer-based food packaging films and coatings, as well as biopolymer-based blends and nanocomposites. Importance of these materials as active and intelligent food packaging systems is also introduced. Finally, the book explores biopolymer-based edible food packaging, and its efficacy in extending the shelf-life of perishable food items using sustainable materials and processes suitable for the future of circular economies around the world.

Readers will also find:



A thorough introduction to the incorporation of nanomaterials as fillers to improve the physico-chemical, mechanical, thermal, barrier, optical, and antimicrobial properties of food packaging nanocomposites
Comprehensive discussions of the use of plant-based bioactive compounds, including essential oils, in biopolymer-based food packaging
Practical examinations of silver and zinc oxide nanoparticles in food packaging
In-depth treatments of polylactic acid-based composites for food packaging applications

Biopolymer-Based Food Packaging: Innovations and Technology Applications is an invaluable resource for academic researchers and professionals in food packaging and related industries, as well as research scholars, graduate students, and entrepreneurs working and studying in the field of food preservation, environmental safety, and human health with a focus on the sustainable future.

Santosh Kumar, Central Institute of Technology Kokrajhar, Kokrajhar, India. Avik Mukherjee, Central Institute of Technology Kokrajhar, Kokrajhar, India. Joydeep Dutta, KTH Royal Institute of Technology, Stockholm, Sweden.

List of Contributors xv

Preface xix

1 An Overview of Natural Biopolymers in Food Packaging 1
Santosh Kumar, Indra Bhusan Basumatary, Avik Mukherjee, and Joydeep Dutta

1.1 Introduction 1

1.2 History and Background 4

1.3 Classification 6

1.3.1 Polysaccharide-Based Biopolymers 6

1.3.2 Protein-Based Biopolymers 11

1.3.3 Lipid-Based Biopolymers 13

1.3.4 Biopolymers Synthesized from Bio-derived Monomers 14

1.4 Advantages and Disadvantages 15

1.5 Properties and Applications 16

1.6 Conclusion and Perspectives 17

References 21

2 Biopolymers: The Chemistry of Food and Packaging 29
Rajib Majumder, Arpita Das, Avik Mukherjee, and Santosh Kumar

2.1 Introduction 30

2.2 Biopolymers, Packaging Surfaces, and the Chemistry of Foods 31

2.2.1 Biopolymers 31

2.2.2 Polysaccharide-Based Biopolymers 32

2.2.2.1 Starch and Derivatives 32

2.2.2.2 Cellulose and Derivatives 33

2.2.2.3 Chitin and Derivatives 33

2.2.2.4 Alginate and Pectin 34

2.2.2.5 Xanthan Gum 34

2.2.3 Protein-Based Biopolymers 35

2.2.3.1 Gelatin 35

2.2.3.2 Collagen 35

2.2.3.3 Soy Protein 36

2.2.3.4 Whey Protein 36

2.2.4 Aliphatic Polyester-Based Biopolymers 36

2.3 Properties 37

2.3.1 Physicochemical Properties 37

2.3.1.1 Density 42

2.3.1.2 Crystallinity 42

2.3.1.3 Melting Temperature (Tm) 43

2.3.1.4 Glass Transition Temperature (Tg) 44

2.3.1.5 Film-Forming Property 44

2.3.1.6 Solubility 44

2.3.1.7 Transparency 45

2.3.1.8 Thermal Stability 45

2.3.2 Mechanical Properties 45

2.3.3 Barrier Properties 46

2.3.4 Bio-activities 47

2.3.5 Biodegradability 49

2.4 Interactions Between Food and Packaging 50

2.4.1 Migration 50

2.4.2 Permeation 50

2.4.3 Sorption 51

2.5 Surface Properties of Packages and Food 52

2.5.1 Hydrophilicity and Hydrophobicity 52

2.5.2 Contact Angle 52

2.5.3 Wettability 53

2.6 Conclusion and Future Perspectives 53

References 54

3 Technologies for Biopolymer-Based Films and Coatings 66
Anjali Khuntia, N. Sai Prasanna, and Jayeeta Mitra

3.1 Introduction 67

3.2 Fabrication Techniques for Films 68

3.2.1 Solvent Casting or Wet Process 68

3.2.1.1 Film-Forming Solution (FFS) 69

3.2.1.2 Film Casting or Film Coating 71

3.2.1.3 Film Drying 71

3.2.2 Extrusion or Dry Process 71

3.2.3 Electrohydrodynamic Technique 76

3.2.4 Comparison and Application of Different Fabrication Techniques 76

3.3 Coating Methods 76

3.3.1 Dipping 77

3.3.2 Brushing 77

3.3.3 Spraying 77

3.3.4 Electrospraying 78

3.3.5 Layer-by-Layer (LBL) Electrostatic Deposition 78

3.3.6 Vacuum Impregnation (VI) 79

3.4 Properties 79

3.4.1 Physical Properties 79

3.4.1.1 Thickness 79

3.4.1.2 Density 80

3.4.2 Water Absorption Capacity and Sorption Analysis 80

3.4.3 Contact Angle/Wetting Tension 82

3.4.4 Mechanical Properties 82

3.4.4.1 Tensile 84

3.4.4.2 Puncture Tests 85

3.4.5 Permeability 88

3.4.5.1 Water Vapor Permeability 88

3.4.5.2 Gas Permeability 92

3.4.6 Optical Properties 93

3.4.7 Rheological Properties 93

3.4.7.1 Viscosity Tests 94

3.4.7.2 Melt Index Test 94

3.4.8 Thermal Properties 95

3.4.8.1 Differential Scanning Calorimetry 95

3.4.8.2 Thermogravimetric Analysis 95

3.4.8.3 Thermomechanical Analysis 96

3.4.8.4 Dynamic Mechanical Thermal Analysis 97

3.5 Applications 98

3.5.1 Composite Films or Multilayer Packaging 99

3.5.2 Nanostructured Film 99

3.5.2.1 Nanocomposite Films 99

3.5.2.2 Nanolaminated Films 101

3.6 Conclusion and Perspectives 101

References 101

4 Chitosan-Based Films and Coatings 110
Gitanjali Gautam, Ruchi Rani, Laxmikant S. Badwaik, and Charu Lata Mahanta

4.1 Introduction 110

4.2 Sources, Structure, and Properties 111

4.2.1 Sources 111

4.2.2 Structure 112

4.2.3 Properties 114

4.3 Isolation, Characterization, and Modifications 115

4.3.1 Isolation 115

4.3.1.1 Extraction from Crustaceous Shells 115

4.3.1.2 Extraction from Fungal Cell Wall and Mushrooms 116

4.3.1.3 Extraction from Insect Cuticles 117

4.3.1.4 Extraction from Terrestrial Animal Exoskeletons 118

4.3.2 Characterization 119

4.3.3 Modifications 119

4.4 Chitosan-Based Composite Films and Coatings 123

4.4.1 Gelatin-Based Edible Films and Coatings 123

4.4.2 Protein-Based Edible Films and Coatings 124

4.4.3 Starch-Based Edible Films and Coatings 125

4.4.4 Alginate-Based Edible Films and Coatings 125

4.5 Using Essential Oils as Antimicrobial Agent 126

4.5.1 Rosemary (Rosmarinus officinalis) 127

4.5.2 Cinnamon (Cinnamomum verum) 127

4.5.3 Oregano (Origanum vulgare) 127

4.5.4 Clove (Syzygium aromaticum L.) 128

4.5.5 Thyme (Thymus vulgaris) 128

4.6 Antimicrobial Activities 128

4.7 Effects on the Quality of Fruits and Vegetables 130

4.8 Effects on the Quality of Meat, Fish, and Seafood 130

4.9 Conclusion and Perspectives 137

References 138

5 Starch-Based Edible Films and Coatings 147
Priyadarshini, S.R., Srinivasan Krishnamoorthy, J.A. Moses, and C. Anandharamakrishnan

5.1 Introduction 148

5.2 Source, Structure, and Characteristics of Starch Granules 148

5.3 Physicochemical, Rheological, and Functional Properties 150

5.4 Chemical and Physical Modifications 152

5.4.1 Chemical Modifications 152

5.4.1.1 Crosslinking 152

5.4.1.2 Grafting 153

5.4.1.3 Esterification 153

5.4.1.4 Etherification 153

5.4.1.5 Oxidization 153

5.4.1.6 Cationic Modification 153

5.4.1.7 Dual Modification 154

5.4.2 Physical Modifications 154

5.4.2.1 Pregelatinized Starch 154

5.4.2.2 Annealing 154

5.4.2.3 Heat Moisture Treatment 154

5.4.2.4 Heat Drying 155

5.4.2.5 Osmotic Pressure Treatment 155

5.2.2.6 Freezing 155

5.2.2.7 Thermal Inhibition 155

5.4.2.8 Non-Thermal Modifications 155

5.5 Starch-Based Bionanocomposite Films and Coatings 156

5.6 Characterization 159

5.6.1 Film Thickness 159

5.6.2 Particle Size Determination 159

5.6.3 Scanning Electron Microscopy (SEM) 159

5.6.4 Fourier Transform Infrared Spectroscopy (FTIR) 160

5.6.5 X-ray Diffraction (XRD) 162

5.7 Applications 164

5.8 Recent Developments and Future Directions 168

5.9 Conclusion and Perspectives 169

References 170

6 Protein-Based Films and Coatings 178
Manashi Das Purkayastha and Santosh Kumar

6.1 Introduction 179

6.2 Types, Structures, and Properties 180

6.2.1 Casein 180

6.2.2 Whey 180

6.2.3 Gluten 181

6.2.4 Soy Protein 182

6.2.5 Collagen and Gelatin 182

6.2.6 Zein 183

6.3 Improvement in Physicochemical Properties of Proteins 183

6.3.1 Plasticizers 184

6.3.2 Physical and Chemical Crosslinking 185

6.4 Protein-Based Nanocomposites and Their Various Properties 187

6.5 Fabrication Techniques 192

6.5.1 Direct Casting 192

6.5.2 Coating 192

6.5.3 Spread Coating 193

6.5.4 Spin Coating 194

6.5.5 Spray Coating or Spraying 194

6.5.6 Dip Coating or Immersion Coating 194

6.5.7 Fluidized-Bed Coating 195

6.5.8 Pan Coating or Panning 195

6.5.9 Layer-by-Layer Assembly 195

6.5.10 Electrospinning 196

6.5.11 Extrusion 196

6.5.12 Compression Molding 198

6.5.13 Lamination 199

6.6 Applications 200

6.6.1 As Carrier of Antimicrobial Agents 201

6.6.2 As Carrier of Antioxidants 203

6.6.3 As Carrier of Flavoring Compounds 204

6.6.4 As Carrier of Live Microorganisms 206

6.7 Conclusion and Perspectives 208

References 209

7 Microbial Polysaccharides (MPs) in Food Packaging 225
C. Shashikumar, Sudip Mitra, and Siddhartha Singha

7.1 Introduction 225

7.2 Production 227

7.3 Extraction and Purification 230

7.4 Characterization 230

7.4.1 Chemical Structure 234

7.4.2 Physicochemical Properties 239

7.4.2.1 Xanthan 239

7.4.2.2 Scleroglucan 239

7.4.2.3 Hyaluronic Acid or Hyaluronan 239

7.4.2.4 Xylinan or Acetan 239

7.4.2.5 Dextran 240

7.4.2.6 Gellan 241

7.4.2.7 Curdlan 242

7.4.2.8 Bacterial Cellulose 243

7.4.2.9 Pullulan 243

7.4.2.10 Alginate 243

7.4.2.11 Levan 244

7.4.2.12 β-Glucan 244

7.4.2.13 FucoPol 244

7.4.2.14 Kefiran 245

7.4.2.15 Polyhydroxyalkanoate 245

7.4.3 Film Formability and Properties Relevant for Packaging 245

7.5 Strategies for Tailoring MP Structures for Packaging Film or Coat Applications 249

7.6 Applications and Their Commercialization Status 251

7.7 Conclusion and Perspectives 255

References 256

8 Polylactic Acid (PLA)-Based Composites in Food Packaging 264
M. Sukumar, K. Sudharsan, and Radha Krishnan K.

8.1 Introduction 264

8.1.1 Production of Lactic Acid 266

8.1.2 Properties 267

8.1.3 PLA Composites as Food Packaging Materials 269

8.2 Isolation and Purification 272

8.3 PLA-Based Antimicrobial Nanocomposites 274

8.4 Applications 276

8.5 Conclusion and Perspectives 277

References 278

9 Antimicrobial Agents in Films and Coatings 282
Yashaswini Premjit, Gulshan Kumar Malik, and Jayeeta Mitra

9.1 Introduction 283

9.2 Classification 284

9.2.1 Natural Antimicrobials 284

9.2.1.1 Plant-Based Antimicrobials 290

9.2.1.2 Microbial-Based Antimicrobials 291

9.2.1.3 Animal-Based Antimicrobials 292

9.2.2 Chemical Antimicrobials 293

9.2.2.1 Nitrites 293

9.2.2.2 Chlorine Dioxide 293

9.2.3 Antimicrobial Nanostructures 294

9.2.3.1 Nanocarriers for Antimicrobials 294

9.2.3.2 Silver Nanoparticles 294

9.2.3.3 Chitosan Nanostructures 294

9.2.3.4 Nanoclays 294

9.2.3.5 Metal Oxide Nanoparticles 295

9.3 Choice of Materials 295

9.4 Methods of Addition 299

9.4.1 Antimicrobial Edible Coatings 299

9.4.2 Antimicrobial Films 303

9.4.3 Antimicrobial Pads 305

9.4.4 Antimicrobial Sachets 306

9.4.5 Modified Atmospheric Packaging 307

9.5 Effect on Packaging Film Properties 308

9.5.1 Effect on Mechanical Properties 308

9.5.2 Effect on Barrier Properties 310

9.5.3 Effect on Appearance, Color, and Transparency 310

9.5.4 Effect on Surface Hydrophilicity/Hydrophobicity of Films 313

9.6 Mechanisms of Action 313

9.6.1 Essential Oils 313

9.6.2 Organic Acids 314

9.6.3 Animal-Based Antimicrobials 314

9.6.4 Antimicrobial Peptides 315

9.6.5 Antimicrobial Nanoparticles 315

9.6.5.1 TiO2 315

9.6.5.2 ZnO 316

9.6.5.3 Ag NPs 316

9.7 Release Kinetics from Packaging Systems to Food 317

9.8 Food Regulations 319

9.9 Commercialization 320

9.10 Conclusion and Perspectives 320

References 322

10 Nanomaterials in Food Packaging 336
Santosh Kumar, Avik Mukherjee, Sweety Kalita, Namrata Singh, Vimal Katiyar Atanu Mitra, and Dipankar Halder

10.1 Introduction 336

10.2 Nanomaterials and Food Packaging Concepts 337

10.3 Applications 339

10.3.1 Supplementing Packaging Characteristics 339

10.3.1.1 Nanoclay 342

10.3.1.2 Graphene 345

10.3.1.3 Organic Nanofillers 345

10.3.2 Antimicrobial Packaging 346

10.3.3 Extending Shelf-Life of Food 347

10.3.4 Inducing Smartness/Intelligence 351

10.4 Migration to Packaged Food Items 353

10.5 Environmental and Safety Aspects 354

10.5.1 Impact on Human Health and the Environment 354

10.5.2 Regulations on Use in the Food Sector 356

10.6 Conclusion and Perspectives 357

References 358

11 Silver and Zinc Oxide Nanoparticles in Films and Coatings 368
Abhishek Roy, K. Dharmalingam, and R. Anandalakshmi

11.1 Introduction 368

11.2 Antimicrobial Properties 369

11.3 Biopolymer-Based Silver Nanocomposites 375

11.4 ZnO Nanostructures in Biopolymers 377

11.5 Applications of Silver Bionanocomposites 379

11.6 Applications of ZnO Bionanocomposites 383

11.7 Conclusion and Perspectives 384

References 385

12 Plant-Based Active Compounds in Food Packaging 394
N. Arul Manikandan, Kannan Pakshirajan, and G. Pugazhenthi

12.1 Introduction 394

12.2 Plant-Based Active Compounds 396

12.2.1 Simple Phenolic Compounds 396

12.2.2 Flavones, Flavanols, and Flavonoids 396

12.2.3 Quinones 396

12.2.4 Tannins 397

12.2.5 Coumarins 398

12.2.6 Alkaloids 398

12.2.7 Terpenes 398

12.3 Active Components to Control Microbial Spoilage 398

12.3.1 Turmeric 405

12.3.2 Cinnamon 405

12.3.3 Lemongrass 405

12.3.4 Neem 406

12.3.5 Coriander 406

12.3.6 Garlic 406

12.3.7 Rosemary 406

12.3.8 Grapefruit Seed 407

12.3.9 Aloe Vera 407

12.3.10 Oregano 407

12.4 Active Materials to Control Food Oxidation (Food Antioxidants) 408

12.4.1 Quercetin 408

12.4.2 Carnosic Acid 409

12.4.3 Ellagic Acid 410

12.4.4 Ferulic Acid 410

12.4.5 α-Tocopherol 411

12.5 Polymer-Based Composites 411

12.6 Conclusion and Perspectives 415

References 415

13 Essential Oils in Active Films and Coatings 422
K. Dharmalingam, Abhishek Roy, and R. Anandalakshmi

13.1 Introduction 422

13.2 Classifications and Components 423

13.3 Properties and Characteristics 424

13.4 Encapsulation 425

13.5 Biopolymer-Essential Oil Composites 428

13.6 Applications 432

13.7 Conclusion and Perspectives 438

References 439

14 Edible Films and Coatings 445
Indra Bhusan Basumatary, Sweety Kalita, Vimal Katiyar, Avik Mukherjee, and Santosh Kumar

14.1 Introduction 445

14.2 Biopolymers 447

14.2.1 Polysaccharides 447

14.2.2 Proteins 448

14.2.3 Lipids 450

14.3 Natural Active Components 450

14.3.1 Plant Extracts 450

14.3.2 Antimicrobial Peptides 452

14.3.3 Probiotics 453

14.4 Nanomaterials 453

14.4.1 Inorganic Nanomaterials 453

14.4.2 Organic Nanomaterials 455

14.5 Extending Shelf-Life of Food 456

14.5.1 Fruits and Vegetables 456

14.5.2 Meat, Poultry, and Fish 459

14.5.3 Milk and Dairy Products 460

14.6 Conclusion and Perspectives 460

References 465

Index 476 

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 170 x 244 mm
Gewicht 680 g
Themenwelt Technik
Wirtschaft Betriebswirtschaft / Management
ISBN-10 1-119-70225-9 / 1119702259
ISBN-13 978-1-119-70225-2 / 9781119702252
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Ein steuerlicher Praxisleitfaden

von Thorsten Klinkner; Domenik Wagener

Buch | Softcover (2022)
Springer Fachmedien Wiesbaden GmbH (Verlag)
CHF 53,15
Fallstricke, Hilfestellungen und Organisationen

von Hermann Riedl; Martin Niklas

Buch | Hardcover (2024)
Springer Gabler (Verlag)
CHF 62,95