Analytic Solutions for Flows Through Cascades
Springer International Publishing (Verlag)
978-3-030-55783-6 (ISBN)
Dr Peter J. Baddoo is an Instructor of Applied Mathematics at MIT. Previously he was an EPSRC Doctoral Prize Fellow at Imperial College London. He recieved a PhD in Applied Mathematics from the University of Cambridge and an MMath from the University of Oxford. His research interests lie in the applications of complex analysis and data-driven techniques to tackle physical problems, such as those arising in fluid dynamics. He is the recipient of several prizes, including "Best Paper" awards from the AIAA and ICA, as well as an Early Career Fellowship from the London Mathematical Society.
Introduction.- Potential Flow Through Cascades of Thin, Impermeable Aerofoils.- Scattering by Cascades of Aerofoils with Realistic Geometry.- Potential Flow Through Cascades of Thin, Porous Aerofoils.- Scattering by Cascades of Aerofoils with Complex Boundary Conditions.- Potential Flow Through Cascades with Multiple Aerofoils per Period.- The Quasi-Periodic Compact Green's Function.- Conclusion.
Erscheinungsdatum | 02.09.2021 |
---|---|
Reihe/Serie | Springer Theses |
Zusatzinfo | XVI, 258 p. 75 illus., 61 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 427 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik ► Maschinenbau | |
Schlagworte | Aeroacoustics of cascade flows • Aerodynamics of cascade flows • Cascades in turbomachinery • Complex Analysis • periodic obstacles • Riemann-Hilbert problem • Riemann–Hilbert problem • Schottky-Klein prime function • Schottky–Klein prime function • Turbomachinery Performance • Wiener–Hopf method • Wiener-Hopf Method |
ISBN-10 | 3-030-55783-9 / 3030557839 |
ISBN-13 | 978-3-030-55783-6 / 9783030557836 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich