Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing
Springer Verlag, Singapore
978-981-15-6697-4 (ISBN)
Simon Fong graduated from La Trobe University, Australia, with a First-Class Honours B.E. Computer Systems degree and a Ph.D. Computer Science degree in 1993 and 1998, respectively. Simon is now working as an Associate Professor at the Computer and Information Science Department of the University of Macau. He is a Co-Founder of the Data Analytics and Collaborative Computing Research Group in the Faculty of Science and Technology. Prior to his academic career, Simon took up various managerial and technical posts, such as Systems Engineer, IT Consultant, and E-commerce Director in Australia and Asia. Dr. Fong has published over 500 international conference and peer-reviewed journal papers, mostly in the areas of data mining, data stream mining, big data analytics, meta-heuristics optimization algorithms, and their applications. He serves on the editorial boards of the Journal of Network and Computer Applications of Elsevier, IEEE IT Professional Magazine, and various special issues of SCIE-indexed journals. Currently, Simon is chairing a SIG, namely Blockchain for e-Health at IEEE Communication Society. Richard Millham a B.A. (Hons.) from the University of Saskatchewan in Canada, M.Sc. from the University of Abertay in Dundee, Scotland, and a Ph.D. from De Montfort University in Leicester, England. After working in industry in diverse fields for 15 years, he joined academe and he has taught in Scotland, Ghana, South Sudan, and the Bahamas before joining DUT. His research interests include software and data evolution, cloud computing, big data, bio-inspired algorithms, and aspects of IOT.
Chapter 1. The Big Data Approach Using Bio-Inspired Algorithms: Data Imputation.- Chapter 2. Parameter Tuning onto Recurrent Neural Network and Long Short Term Memory (RNN-LSTM) Network for Feature Selection in Classification of High-dimensional Bioinformatics Datasets.- Chapter 3. Data Stream Mining in Fog Computing Environment with Feature Selection Using Ensemble of Swarm Search Algorithms.- Chapter 4. Pattern Mining Algorithms.- Chapter 5. Extracting Association Rules: Meta-Heuristic and Closeness Preference Approach.- Chapter 6. Lightweight Classifier-based Outlier Detection Algorithms from Multivariate Data Stream.- Chapter 7. Comparison of Contemporary Meta-heuristic Algorithms for Solving Economic Load Dispatch Problem.- Chapter 8. The paradigm on fog computing with bio-inspired search methods and the ‘5Vs’ of big data.- Chapter 9. Approach for sentiment analysis on social media sites.- Chapter 10. Data Visualisation techniques and Algorithms.- Chapter 11. Business Intelligence.- Chapter 12. Big Data Tools for Tasks.
Erscheinungsdatum | 03.09.2021 |
---|---|
Reihe/Serie | Springer Tracts in Nature-Inspired Computing |
Zusatzinfo | 41 Illustrations, color; 8 Illustrations, black and white; IX, 226 p. 49 illus., 41 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Algorithmen | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Technik | |
ISBN-10 | 981-15-6697-6 / 9811566976 |
ISBN-13 | 978-981-15-6697-4 / 9789811566974 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich