Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods - Yongchun Xie, Changqing Chen, Tao Liu, Min Wang

Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
XII, 495 Seiten
Springer Singapore (Verlag)
978-981-15-6990-6 (ISBN)
Systemvoraussetzungen
181,89 inkl. MwSt
(CHF 177,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on the theory and design methods for guidance, navigation, and control (GNC) in the context of spacecraft rendezvous and docking (RVD). The position and attitude dynamics and kinematics equations for RVD are presented systematically in accordance with several different coordinate systems, including elliptical orbital frame, and recommendations are supplied on which of these equations to use in different phases of RVD. The book subsequently explains the basic principles and relative navigation algorithms of RVD sensors such as GNSS, radar, and camera-type RVD sensors. It also provides guidance algorithms and schemes for different phases of RVD, including the latest research advances in rapid RVD.  

In turn, the book presents a detailed introduction to intelligent adaptive control and proposes corresponding theoretical approaches to thruster configuration and control allocation for RVD. Emphasis is placed on the design method of active and passive trajectory protection in different phases of RVD, and on the safety design of the RVD mission as a whole. For purposes of verification, the Shenzhou spacecraft's in-orbit flight mission is introduced as well.  

All issues addressed are described and explained from basic principles to detailed engineering methods and examples, providing aerospace engineers and students both a basic understanding of, and numerous practical engineering methods for, GNC system design in RVD. 



Dr. Yongchun Xie is a Professor at Beijing Institute of Control Engineering (BICE). She received her Bachelor's degree from Tsinghua University in 1989 and her Master's degree and Ph.D. in Control Theory and Engineering from China Academy of Space Technology (CAST) in 1992 and 1994, respectively. From 1998 to 1999, she visited the Institute of Space and Astronautical Science in Japan as a senior scholar. She is currently a corresponding member of the IAA (International Academy of Astronautics) and has been engaged in the field of guidance, navigation, and control (GNC) for spacecraft rendezvous and docking (RVD) for nearly 20 years. She has participated in China's manned space project as a leading engineer, responsible for the GNC systems design, and her GNC schemes have been successfully applied to RVD tasks for China's spacecraft. Her research interests are chiefly in autonomous guidance and control of rendezvous and intelligent control of spacecraft. She has published more than 100 articles in technical journals and conference proceedings. 

Dr. Changqing Chen is a Senior Engineer at BICE. He obtained his Ph.D. in Control Theory and Engineering from CAST in 2008. He has been involved in rendezvous and docking guidance research since 2005, participated in the control scheme design of Shenzhou manned spacecraft, and was the main designer of the Tianzhou-1 cargo spacecraft control system. 

Dr. Tao Liu is a Senior Engineer at BICE. He obtained his Ph.D. in Control Theory and Engineering from CAST in 2010 and has been involved in China's lunar exploration project. His current research interests include autonomous navigation in deep space exploration and guidance for rendezvous.

Dr. Min Wang is a Senior Engineer at BICE. She obtained her Ph.D. in Control Theory and Engineering from CAST in 2010 and subsequently began working there. She has participated in the GNC scheme design for the Shenzhou spacecraft and was the GNC system designer for the Tianzhou-1 cargo spacecraft. 


This book focuses on the theory and design methods for guidance, navigation, and control (GNC) in the context of spacecraft rendezvous and docking (RVD). The position and attitude dynamics and kinematics equations for RVD are presented systematically in accordance with several different coordinate systems, including elliptical orbital frame, and recommendations are supplied on which of these equations to use in different phases of RVD. The book subsequently explains the basic principles and relative navigation algorithms of RVD sensors such as GNSS, radar, and camera-type RVD sensors. It also provides guidance algorithms and schemes for different phases of RVD, including the latest research advances in rapid RVD.  In turn, the book presents a detailed introduction to intelligent adaptive control and proposes corresponding theoretical approaches to thruster configuration and control allocation for RVD. Emphasis is placed on the design method of active and passive trajectory protection in different phases of RVD, and on the safety design of the RVD mission as a whole. For purposes of verification, the Shenzhou spacecraft's in-orbit flight mission is introduced as well.  All issues addressed are described and explained from basic principles to detailed engineering methods and examples, providing aerospace engineers and students both a basic understanding of, and numerous practical engineering methods for, GNC system design in RVD. 
Erscheint lt. Verlag 16.2.2021
Zusatzinfo XII, 495 p. 243 illus., 212 illus. in color.
Sprache englisch
Original-Titel Hang Tian Qi Jiao Hui Dui Jie Zhi Dao Dao Hang Kong Zhi Yuan Li He Fang Fa
Themenwelt Technik Bauwesen
Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
Technik Maschinenbau
Schlagworte Docking • guidance • navigation and control • Rendezvous • spacecraft
ISBN-10 981-15-6990-8 / 9811569908
ISBN-13 978-981-15-6990-6 / 9789811569906
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 23,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
CHF 117,20