Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Fashion Recommender Systems (eBook)

Nima Dokoohaki (Herausgeber)

eBook Download: PDF
2020 | 1st ed. 2020
VII, 145 Seiten
Springer International Publishing (Verlag)
978-3-030-55218-3 (ISBN)

Lese- und Medienproben

Fashion Recommender Systems -
Systemvoraussetzungen
171,19 inkl. MwSt
(CHF 167,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book includes the proceedings of the first workshop on Recommender Systems in Fashion 2019. It presents a state of the art view of the advancements within the field of recommendation systems with focused application to e-commerce, retail and fashion. The volume covers contributions from academic as well as industrial researchers active within this emerging new field.

Recommender Systems are often used to solve different complex problems in this scenario, such as social fashion-based recommendations (outfits inspired by influencers), product recommendations, or size and fit recommendations. 

The impact of social networks and the influence that fashion influencers have on the choices people make for shopping is undeniable. For instance, many people use Instagram to learn about fashion trends from top influencers, which helps them to buy similar or even exact outfits from the tagged brands in the post. When traced, customers' social behavior can be a very useful guide for online shopping websites, providing insights on the styles the customers are really interested in, and hence aiding the online shops in offering better recommendations and facilitating customers quest for outfits. 

Another well known difficulty with recommendation of similar items is the large quantities of clothing items which can be considered similar, but belong to different brands. Relying only on implicit customer behavioral data will not be sufficient in the coming future to distinguish between for recommendation that will lead to an item being purchased and kept, vs. a recommendation that might result in either the customer not following it, or eventually return the item. 

Finding the right size and fit for clothes is one of the major factors not only impacting customers purchase decision, but also their satisfaction from e-commerce fashion platforms. Moreover, fashion articles have important sizing variations. Finally, customer preferences towards perceived article size and fit for their body remain highly personal and subjective which influences the definition of the right size for each customer.

The combination of the above factors leaves the customers alone to face a highly challenging problem of determining the right size and fit during their purchase journey, which in turn has resulted in having more than one third of apparel returns to be caused by not ordering the right article size. This challenge presents a huge opportunity for research in intelligent size and fit recommendation systems and machine learning solutions with direct impact on both customer satisfaction and business profitability.



Dr. Nima Dokoohaki is a senior data scientist currently affiliated with Accenture Applied Intelligence, a leading data and analytics service provider world wide. In addition, he also maintains collaboration as an external advisor, with a research group at Software and Computer Systems department, a part of School for Electrical Engineering and Computer Science at Royal Institute of Technology (KTH). His research interests include Trust & Privacy, Applied Machine Learning, Social Networks and Recommendation Systems. He received his Ph.D. in information and communications technology (ICT) in 2013. The main theme of his research was how to understand and leverage the notion of computational and social trust so online service providers can deliver more transparent and privacy preserving analytical services to their end users. He explored application of his research onto social network data and recommendation systems. His research has been backed by European projects funded from EU FP7 and Horizon 2020 framework programs, as well as distinguished public funding organizations including Swedish Research Council and Vinnova. After graduation, he received a distinguished fellowship from the European Research Consortium for Informatics and Mathematics (ERCIM) where he worked on large scale data and analytics. He has published over 40 peer-reviewed articles. In addition to two best paper awards, he has been interviewed for his visible research and his lecture has been broadcasted on Swedish public television. He is an ACM professional member, he is a certified reviewer for prestigious Knowledge and Information Systems (KAIS) as well as occasional reviewer for recognized international venues and journals. 

Erscheint lt. Verlag 4.11.2020
Reihe/Serie Lecture Notes in Social Networks
Lecture Notes in Social Networks
Zusatzinfo VII, 145 p. 64 illus., 44 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Sozialwissenschaften Politik / Verwaltung
Technik Elektrotechnik / Energietechnik
Schlagworte Computational Social Sciences • computer vision • fashion prediction • Information Retrieval • information systems • machine learning • Recommender Systems • Text Mining
ISBN-10 3-030-55218-7 / 3030552187
ISBN-13 978-3-030-55218-3 / 9783030552183
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 48,75