Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Pattern Analysis of the Human Connectome - Dewen Hu, Ling-Li Zeng

Pattern Analysis of the Human Connectome

, (Autoren)

Buch | Softcover
258 Seiten
2020 | 1st ed. 2019
Springer Verlag, Singapore
978-981-329-525-4 (ISBN)
CHF 169,95 inkl. MwSt
  • Versand in 10-14 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents recent advances in pattern analysis of the human connectome. The human connectome, measured by magnetic resonance imaging at the macroscale, provides a comprehensive description of how brain regions are connected. Based on machine learning methods, multiviarate pattern analysis can directly decode psychological or cognitive states from brain connectivity patterns. Although there are a number of works with chapters on conventional human connectome encoding (brain-mapping), there are few resources on human connectome decoding (brain-reading). Focusing mainly on advances made over the past decade in the field of manifold learning, sparse coding, multi-task learning, and deep learning of the human connectome and applications, this book helps students and researchers gain an overall picture of pattern analysis of the human connectome. It also offers valuable insights for clinicians involved in the clinical diagnosis and treatment evaluation of neuropsychiatric disorders.

Dr. Dewen Hu is a Professor at the College of Intelligence Science and Technology, National University of Defense Technology. He is a recipient of the National Science Fund for Distinguished Young Scholars and Changjiang Scholar Program of the Ministry of Education in China. His research interests include pattern recognition and cognitive neuroscience, and he has authored over 150 papers in international, peer-reviewed journals, such as Brain, PNAS, Science Advances, Cerebral Cortex, NeuroImage, Human Brain Mapping, IEEE TPAMI, IEEE TNN, IEEE and TMI. He is also an acting editor of Neural Networks, and associate editor of IEEE Transactions on SMC: Systems.

Introduction.- Multivariate pattern analysis of whole-brain functional connectivity in major depression.- Discriminative analysis of nonlinear functional connectivity in schizophrenia.- Predicting individual brain maturity using window-based dynamic functional connectivity.- Locally linear embedding of functional connectivity for classification.- Locally linear embedding of anatomical connectivity for classification.- Locality preserving projection of functional connectivity for regression.- Intrinsic discriminant analysis of functional connectivity for multi-class classification.- Sparse representation of dynamic functional connectivity in depression.- Low-rank learning of functional connectivity reveals neural traits of individual differences.- Multi-task learning of structural MRI for multi-site classification.- Deep discriminant auto-encoder network for multi-site fMRI classification

Erscheinungsdatum
Zusatzinfo 81 Illustrations, color; 5 Illustrations, black and white; VIII, 258 p. 86 illus., 81 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Weitere Themen Bioinformatik
Mathematik / Informatik Mathematik Angewandte Mathematik
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Medizin / Pharmazie Studium
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Deep learning • Human connectome • Magnetic Resonance Imaging • manifold learning • sparse coding
ISBN-10 981-329-525-2 / 9813295252
ISBN-13 978-981-329-525-4 / 9789813295254
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Nadine Reinicke

Buch | Softcover (2021)
Urban & Fischer in Elsevier (Verlag)
CHF 22,50