Hyperspectral Image Analysis (eBook)
VI, 466 Seiten
Springer International Publishing (Verlag)
978-3-030-38617-7 (ISBN)
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Dr. Saurabh Prasad is an Associate Professor at the Department of Electrical and Computer Engineering at the University of Houston, TX, USA.
Dr. Jocelyn Chanussot is a Professor in the Signal and Images Department at Grenoble Institute of Technology, France.
Erscheint lt. Verlag | 27.4.2020 |
---|---|
Reihe/Serie | Advances in Computer Vision and Pattern Recognition | Advances in Computer Vision and Pattern Recognition |
Zusatzinfo | VI, 466 p. 170 illus., 144 illus. in color. |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Anomaly Detection • computational imaging • Deep learning • Hyperspectral Image Analysis • manifold learning • Remote Sensing • Remote Sensing/Photogrammetry • sparse representations • subspace learning • Target Recognition |
ISBN-10 | 3-030-38617-1 / 3030386171 |
ISBN-13 | 978-3-030-38617-7 / 9783030386177 |
Haben Sie eine Frage zum Produkt? |
Größe: 22,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich