Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Reinforcement of Rubber - Shinzo Kohjiya, Atsushi Kato, Yuko Ikeda

Reinforcement of Rubber (eBook)

Visualization of Nanofiller and the Reinforcing Mechanism
eBook Download: PDF
2020 | 1st ed. 2020
XII, 188 Seiten
Springer Singapore (Verlag)
978-981-15-3789-9 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents the most recent description of rubber reinforcement, focusing on the network-like structure formation of nanofiller in the rubber matrix under the presence of bound rubber. The resultant filler network is visualized by electron tomography applied to rubber. In the case of natural rubber, the self-reinforcement effect is uniquely functioning, and new template crystallization is suggested. Here, the crystallites are also believed to arrange themselves in a network-like manner. These results are of great use, particularly for engineers, in designing rubber reinforcement. 



Shinzo Kohiya received his PhD from Kyoto University in 1974. His reserach interests include kinetic studies on ionic polymerizations, development of soft rubbery materials of high functionality, structural studies on polymeric amorphous materials and their applications, and scientific elucidation of filler dispersion in rubbery matrix. He is currently a professor emeritus, Kyoto University. He is the author of several books, and about 350 papers which appearred in decent international journals. He won the Oenslager award from Society of Rubber Industry, Japan, in 1994. He has 23 years, 13 years and 3 years of teaching experiences at Kyoto Institute of Technology, Kyoto university, and Mahidol University in Thailand, respectively.

Atsushi Kato rreceived his PhD from Tohoku University in 1985. His research interests include unusual stress-strain properties of natural rubber vulcanizates with high primary molecular weight, fatigue characteristics of glass fiber reinforced polyamide, study on microfracture mechanism of glass fiber reinforced polycarbonate by using acoustic emission, optical transparency and silica network in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy technique, reinforcement mechanism of carbon black (CB) in natural rubber vulcanizates, and so on. He is currently working on development of analysis technology of soft materials at the automotive analysis department of NISSAN ARC, LTD. He won the Materials Life Society Review Award from the Materials Life Society, Japan in 2009, and the Rubber-Technical Merit Award from the Society of Rubber Science and Technology, Japan in 2012. 

Yuko Ikeda received her Ph.D. from Kyoto University in 1991. The title of thesis was 'Studies on Blood-Compatible Polyurethanes with Triblock Polyether Soft Segments'. Her research interests include fundamental studies on the sulfur cross-linking and reinforcement of rubbers by using new analytical methods. Characterization of natural rubbers are also studied by using synchrotron X-ray analyses. She is currently a professor at Kyoto Institute of Technology. She published 137 original papers, 67 review papers and 16 essays, and contributed to 48 books. She won the 29th Oenslager award for her study on 'Fundamental study on cross-linking of rubber' from Society of Rubber Industry, Japan, in 2014. She has 31 years of teaching experience at Kyoto Institute of Technology.

This book presents the most recent description of rubber reinforcement, focusing on the network-like structure formation of nanofiller in the rubber matrix under the presence of bound rubber. The resultant filler network is visualized by electron tomography applied to rubber. In the case of natural rubber, the self-reinforcement effect is uniquely functioning, and new template crystallization is suggested. Here, the crystallites are also believed to arrange themselves in a network-like manner. These results are of great use, particularly for engineers, in designing rubber reinforcement. 

Preface 6
Contents 9
Part I Filler Reinforcement of Rubber 13
1 Rubbery Materials and Soft Nanocomposites 14
1.1 Introduction to Rubber Reinforcement 14
1.2 Carbon Black-Loaded Natural Rubber Vulcanizate: The Pioneer of Polymer Composite 15
1.3 Reinforcement of Cross-Linked Rubber by Particulate Nanofiller 19
1.4 Development of Soft Nanocomposite 20
References 22
2 Filler and Rubber Reinforcement 24
2.1 Reinforcing Effect 24
2.2 Compounding Reagents for Rubber 28
2.3 Non-reinforcing Filler 30
2.4 Reinforcing Nanofiller 31
2.4.1 Introduction to Reinforcing Filler 31
2.4.2 Carbon Black (CB) 31
2.4.3 Particulate Silica 34
2.4.4 Non-spherical Rubber Reinforcing Materials 34
2.5 Reinforcing Factors of Particulate Nanofiller 35
2.5.1 Elucidation of Reinforcing Effects 35
2.5.2 Bound Rubber 36
2.5.3 Structuring of Nanofiller 38
2.5.4 Hydrodynamic Volume Effect by Filler Mixing 40
2.5.5 Structure Formation of Nanofiller: Filler Networks 44
2.6 Some More Remarks on Rubber Reinforcement 47
2.6.1 The Payne and the Mullins Effects 47
2.6.2 Reinforcement Theory by Sato and Furukawa 47
2.6.3 Rubber Mixing and Nanofiller Aggregate 48
2.6.4 Reconsideration of Hydrodynamic Volume Effect 49
2.6.5 Promoter for Rubber Reinforcement by Filler 51
References 51
Part II Analysis of Nanofiller Dispersion in Rubber Matrix 57
3 Principle and Practice of Three-Dimensional Transmission Electron Microscopy (3D-TEM) 58
3.1 Image Formation by Transmission Electron Microscopy (TEM) 58
3.2 Formation of Three-Dimensional Image by 3D-TEM 60
3.2.1 TEM and Tomography 60
3.2.2 Tomography Applied to TEM 61
3.2.3 Notable Points on 3D-TEM Measurement 64
References 65
4 Nanofiller Dispersion in Rubber as Revealed by 3D-TEM 66
4.1 Introduction 66
4.2 Particulate Silica Dispersion as Revealed by 3D-TEM 67
4.2.1 Pretreatment of Rubber Sample Cross-Linked by Sulfur/Accelerator System 67
4.2.2 3D-Imaging of Silica Dispersion and Its Analysis 70
4.2.3 Visualization of Hydrophilic and Hydrophobic Silica in Rubber Matrix 72
4.3 Carbon Black Dispersion as Revealed by 3D-TEM 79
4.3.1 Importance of Carbon Black in Rubber Reinforcement 79
4.3.2 3D-Imaging of Carbon Black Dispersion and Its Analysis 80
4.3.3 Network Formation of Carbon Black in Rubber Matrix 85
4.4 Dispersion of the Other Fillers as Revealed by 3D-TEM 88
References 89
5 Reinforcing Mechanism of Rubber by Nanofiller 91
5.1 Introduction 91
5.2 Prehistory up to the Beginning of Discussions on Rubber Reinforcement (Until the Early Second Half of the Twentieth Century) 92
5.3 Progress in the Modeling of Rubber Reinforcement (Until the End of the Twentieth Century) 94
5.4 Toward Nanofiller Networking in Rubber Matrix (Early in the Twenty-First Century) 96
5.5 Nanofiller Clustering as Revealed by Synchrotron Radiation 101
5.6 Semiflexible Nanofiller Networks with Bound Rubber and Proposal of a Tentative Rheological Model 105
References 110
Part III Non-Carbon Reinforcement of Rubber 113
6 Particulate Silica Reinforcement of Rubber 114
6.1 Use of Particulate Silica for High-Performance Rubber 114
6.1.1 Utilization of Wet Silica in Rubber Compounding 114
6.1.2 Wet Silica for Higher Performances 115
6.1.3 In Situ Compounding of Particulate Silica: A Soft Processing Method 116
6.2 Rubber Reinforcement by In Situ Silica 117
6.2.1 Silica Particle Generated at Place in the Cross-Linked Diene Rubber 117
6.2.2 Conventional Processing of Rubber Mixture with Silica Generated In Situ 121
6.2.3 Soft Processing from Latex Toward Network Structure of In Situ Silica 124
References 127
7 Rubber Reinforcement with Lignin 129
7.1 Lignin: Old, Still a Promising Filler 129
7.2 Mixing of Lignin into Rubber by a Soft Processing 132
7.3 Lignin as Reinforcing Filler for Soft Biocomposite 134
References 137
8 Self-Reinforcement in Natural Rubber (NR): Template Crystallization 139
8.1 Low-Temperature Crystallization of NR 139
8.1.1 Amorphous and Crystal 139
8.1.2 Nucleation and Low-Temperature Crystallization of NR 142
8.2 Template Crystallization: Dynamic Mechanism of Strain-Induced Crystallization of NR 146
8.2.1 Extended Network Chain 146
8.2.2 Formation of Template Followed by Instantaneous Strain-Induced Crystallization 148
8.2.3 Prospective Comments on a Kinetic Modeling of Template Crystallization 153
8.3 Self-Reinforcement Behavior of NR 157
8.3.1 Tensile Properties 157
8.3.2 Tear Property: Delay of Crack Growth by Template Crystallization 158
8.3.3 Fatigue Failure 161
8.3.4 Novel Functional Properties of Cross-Linked NR 164
References 167
Part IV Prospective Views on Rubber Reinforcement 171
9 Reinforcement in the Twenty-First Century 172
9.1 Globalization and Sustainable Development: Historical Background 172
9.1.1 Globalization: Transportation and Information 172
9.1.2 Rapid Progress of Technology and Social Changes 176
9.2 Soft Materials in the Twenty-First Century 179
9.3 Soft Nanocomposites in the Twenty-First Century 182
9.3.1 Transportation Society and Rubber Reinforcement 182
9.3.2 Future of Reinforced Rubbery Materials 187
References 190

Erscheint lt. Verlag 1.4.2020
Reihe/Serie Springer Series on Polymer and Composite Materials
Springer Series on Polymer and Composite Materials
Zusatzinfo XII, 188 p. 82 illus., 47 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte 3D-TEM • Nano-filler clustering to form network structure • Rubber reinforcement • Self-reinforcement of natural rubber • Template crystallization of natural rubber
ISBN-10 981-15-3789-5 / 9811537895
ISBN-13 978-981-15-3789-9 / 9789811537899
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95