Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Atomic Switch (eBook)

From Invention to Practical Use and Future Prospects

Masakazu Aono (Herausgeber)

eBook Download: PDF
2020 | 1st ed. 2020
XI, 266 Seiten
Springer International Publishing (Verlag)
978-3-030-34875-5 (ISBN)

Lese- und Medienproben

Atomic Switch -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Written by the inventors and leading experts of this new field, the book results from the International Symposium on 'Atomic Switch: Invention, Practical use and Future Prospects' which took place in Tsukuba, Japan on March 27th - 28th, 2017. The book chapters cover the different trends from the science and technology of atomic switches to their applications like brain-type information processing, artificial intelligence (AI) and completely novel functional electronic nanodevices. The current practical uses of the atomic switch are also described. As compared with the conventional semiconductor transistor switch, the atomic switch is more compact (-1/10) with much lower power consumption (-1/10) and scarcely influenced by strong electromagnetic noise and radiation including cosmic rays in space (-1/100). As such, this book is of interest to researchers, scholars and students willing to explore new materials, to refine the nanofabrication methods and to explore new and efficient device architectures.

Masakazu Aono obtained his Ph. D from University of Tokyo in 1972 and then joined the National Institute for Research in Inorganic Materials (NIRIM). In 1986, he moved to RIKEN as a Chief Scientist and organized/operated the Surface and Interface Laboratory until 2002 (in the meantime, from 1996 to 2002, he worked as a Professor at Osaka University). In 2002, he moved to the National Institute for Materials Science (NIMS) as the Director of Nanomaterials Laboratory (NML). From 2007 to 2017, he organized/operated the International Center for Materials Nanoarchitectonics (MANA) in NIMS as its Director. At present, he is an Executive Advisor of MANA and is also a Distinguished Chair Professor of the Department of Materials Science and Engineering, National Taiwan University (NTU). He is known as a pioneer of nanoscale science and technology, due to his various original achievements such as the initiation of impact-collision ion scattering spectroscopy (ICISS) for surface atomic arrangement analysis, the multiprobe STM/AFMs for nanoscale electrical conductivity measurements, reversible control of local nanochemical reactions and the invention and development of the 'Atomic Switch' among others.

Preface 7
Contents 9
Editor and Associate Editors 11
Invention and Development of the Atomic Switch 12
1 Introduction 12
2 Creation of the Atomic Switch Using Ionic Conductor 15
2.1 Basic Operation Principle 16
2.2 Fabrication of the Gap-Type Atomic Switch 17
2.3 Quantized Conductance Using Point Contact 19
2.4 Logic-Gate Operation 20
3 Gapless (Junction)-Type Atomic Switch 22
3.1 Switch Operation Principle 23
3.2 Quantized Conductance 25
References 26
Pathway to Atomic-Switch Based Programmable Logic 27
1 Introduction 27
2 Concept of ``Switch Over Logic´´ 29
3 Atomic Switch Technology 29
4 Atomic-Switch Based FPGA 32
5 Operation in Harsh Environment 37
6 FPGA Accelerator 38
7 Conclusions 40
References 41
Atomic Switch FPGA: Application for IoT Sensing Systems in Space 43
1 Introduction 44
2 Design Requirements for Edge Computing of IoT Applications in Space 45
3 Adaptation of Atomic Switch FPGAs to IoT Applications in Space 53
4 Adopting Atomic Switch FPGA to Embedded Automaton 56
4.1 Associating Layered Structure Design of a PE with Atomic Switch FPGA 56
4.2 Discussion of a Design Flow to Design Processor Elements Using Atomic Switches 57
5 An Example Implementation and Evaluation Result 59
5.1 Infrared Sensor System Implementation Using an Atomic Switch FPGA 59
5.2 Onboard Calibration Functions for Infrared Image Sensors 60
5.3 NanoBridge 60
5.4 Evaluation Result 62
6 Discussion 65
References 67
An Evaluation of Single Event Effects by Heavy Ion Irradiation on Atom Switch ROM/FPGA 69
1 Introduction 69
1.1 Overview of the Space Radiation Environment 69
1.2 Radiation Effects on Semiconductor Devices 71
1.3 Introduction to Atom Switches 73
2 Atom Switch 74
2.1 Overview 74
2.2 Atom Switch Memory 75
2.3 Atom Switch FPGA 75
3 Experimental Setup 76
4 Results and Discussions 79
4.1 ROM 79
4.2 FPGA 80
5 Conclusion 81
References 81
Nanoscale Electrochemical Studies: How Can We Use the Atomic Switch 83
1 Introduction 83
2 (Sub-)Nanoscale Electrochemical Studies 84
3 Using the Atomic Switch 85
4 The Atomic Switch as a Fundamental Approach for Electrochemical Studies 86
4.1 Theoretical Considerations 87
4.1.1 Imaging and Electrochemical Reactions 87
4.1.2 Using Time as a Kinetic Parameter 89
4.1.3 Using STM Tip to Modify the Transfer Coefficient ? 92
4.2 Examples for Studying Electrochemical Processes Using the Atomic Switch 93
4.2.1 Ag+ Reduction at RbAg4I5 Surface 93
4.2.2 Redox Processes on Oxides Studied by Atomic Switch 97
5 Conclusions 102
References 103
Atomistic Simulations for Understanding Microscopic Mechanism of Resistive Switches 104
1 Introduction 104
2 Computation Methods and Models 105
2.1 Methods 105
2.2 Structure of Amorphous Ta2O5 105
3 Switching Mechanism of Cu/a-Ta2O5/Pt Atomic Switch 107
3.1 Conduction Path in Cu/a-Ta2O5/Pt Atomic Switch 107
3.1.1 Single Cu Atomic Chains in a-Ta2O5 107
3.1.2 Cu Nanowires in a-Ta2O5 107
3.1.3 The Thinnest Cu Filament in a-Ta2O5 109
3.1.4 Cu Filament in a-Ta2O5 with Nanopore 110
3.1.5 Transport Properties of Cu/a-Ta2O5/Pt with and Without Cu Filament 111
3.2 Interface Structures of Cu/a-Ta2O5/Pt 111
3.2.1 Interface Structures and Electronic Properties of Cu/a-Ta2O5/Pt Structure 112
3.2.2 Stability of Cu/a-Ta2O5/Pt Structure 115
3.2.3 Schottky Barrier Height of Cu/a-TaOx/Pt Structure 115
4 Switching Mechanism of Pt/a-TaOx/Pt Resistive Switch 118
4.1 Conduction Path in Pt/a-TaOx/Pt Resistive Switch 118
4.1.1 Structures and Electronic Properties of Single O Vacancies in a-Ta2O5 119
4.1.2 Structures and Electronic Properties of a-TaO2.5 with High VO Concentration 120
4.1.3 Crystallization of Conduction Path in a-TaOx Based Resistive Switch 125
4.1.4 Transport Property of Pt/a-TaOx/Pt Resistive Switch 127
4.2 Diffusion of Metal and Oxygen Ions in a-TaOx Based Resistive Switch 128
4.2.1 Diffusion Coefficients and Barriers of Ta and O Ions in a-TaOx 128
4.2.2 Diffusion Mechanism of Ta and O Ions in a-TaOx 130
5 Concluding Remarks 130
References 131
Development of Three-Terminal Atomic Switches and Related Topics 135
1 Introduction 135
2 Metal Cation-Controlled Three-Terminal Atomic Switches 136
2.1 Filament Growth Controlled Type 136
2.2 Nucleation Controlled Type 138
3 Oxygen Ion Controlled Type 142
4 Summary 144
References 144
Solid-Polymer-Electrolyte-Based Atomic Switches 146
1 Introduction 146
2 Invention of SPE-Based Atomic Switch 147
2.1 Typical Switching Characteristics 147
2.2 Switching Mechanism 150
3 Kinetic Factors Determining Filament Formation 152
3.1 Direct Observation of Filament Growth Processes 152
3.2 Impacts of Device Configuration and Experimental Parameters 154
4 Highly Reproducible Conductance Quantization 156
4.1 I-V Characteristics in the Atomic Contact Regime 157
4.2 Transport Simulations for Atomic Point Contacts 157
5 Flexible Switch/Memory Applications 161
6 Summary 163
References 164
Nanoionic Devices for Physical Property Tuning and Enhancement 167
1 Introduction 167
2 Bandgap Tuning of Graphene Oxide Achieved by Redox Reaction 170
3 Magnetization and Magnetoresistance Tuning Achieved by Redox Reaction 173
4 Modulation of Superconducting Critical Temperature by All-Solid-State EDLT 175
5 Conclusions 177
References 178
Artificial Synapses Realized by Atomic Switch Technology 181
1 Introduction 182
2 Gap-Type Atomic Switch Synaptic Behavior 183
2.1 Ag2S-Based Switch 183
2.2 Cu2S-Based Atomic Switch 187
3 Synaptic Behavior of the Gapless-Type Atomic Switch 193
3.1 Ag/Ta2O5-Based Switch 193
3.2 Pt/WO3 - x-Based Switch 197
4 Summary 203
References 203
Atomic Switch Networks for Neuroarchitectonics: Past, Present, Future 206
1 Introduction 207
2 Frameworks for Neuromorphic and Bio-inspired Computing 208
2.1 Neuromorphic Computing and Artificial Neural Networks 208
2.2 Artificial Neural Networks 210
2.3 Deep Learning 212
2.4 Reservoir Computing 213
3 Hardware Paradigms for Neuromorphic Computing 214
3.1 Neuromorphic Chips 214
3.2 FPGAs 215
3.3 Graphics Processing Units (GPUs) 216
3.4 Purpose-Built Chips and History 217
3.5 ASNs for Computing 218
4 Building the Atomic Switch Network 219
4.1 Network Fabrication 221
4.2 Network Functionalization 223
4.3 Device Fabrication 223
4.4 Measurement Platform 224
5 Results: Atomic Switch Network Dynamics 225
5.1 Operational Characteristics of the Atomic Switch 225
5.2 Device Activation and Switching 226
5.3 Coupling and Harmonic Generation 229
5.4 Memory and Plasticity 230
5.5 Fluctuations, Correlations and Power Laws 231
5.6 Distributed Switching/Correlations 233
5.7 Temporal Metastability and Criticality 233
5.8 Altered Critical Power-Law Dynamics 235
6 Computing with the Atomic Switch Network 236
6.1 Theoretical Constructs 236
6.2 Implementations 239
6.2.1 Waveform Regression 239
6.2.2 Logic 241
7 Outlook 244
References 245
A List of Papers Related to the Atomic Switch 249

Erscheint lt. Verlag 2.3.2020
Reihe/Serie Advances in Atom and Single Molecule Machines
Advances in Atom and Single Molecule Machines
Zusatzinfo XI, 266 p. 150 illus., 112 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik
Schlagworte Artificial Synapse • Atomic Switch • Field Programme Gate Array • memristor • Neuromorphic Network • Resistive Switch
ISBN-10 3-030-34875-X / 303034875X
ISBN-13 978-3-030-34875-5 / 9783030348755
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35