Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Nanomaterials and Environmental Biotechnology (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
IX, 434 Seiten
Springer International Publishing (Verlag)
978-3-030-34544-0 (ISBN)

Lese- und Medienproben

Nanomaterials and Environmental Biotechnology -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen


Nanotechnology is considered as one of the emerging fields of science. It has applications in different biological and technological fields which deal with the science of materials at nanoscale (10-9). On the other hand, biotechnology is another field that deals with contemporary challenges. Nanobiotechnology fills the gap between these two fields. It merges physical, chemical, and biological principles in a single realm. This combination opens up new possibilities. At nanoscale dimensions, it creates precise nanocrystals and nanoshells. Integrated nanomaterials are used with modified surface layers for compatibility with living systems, improved dissolution in water, or biorecognition leading to enhanced end results in biotechnological systems. These nanoparticles can also be hybridized with additional biocompatible substances in order to amend their qualities to inculcate novel utilities. Nanobiotechnology is used in bioconjugate chemistry by coalescing up the functionality of non-organically obtained molecular components and biological molecules in order to veil the immunogenic moieties for targeted drug delivery, bioimaging and biosensing.

 

This book blends the science of biology, medicine, bioinorganic chemistry, bioorganic chemistry, material and physical sciences, biomedical engineering, electrical, mechanical, and chemical science to present a comprehensive range of advancements. The development of nano-based materials has made for a greater understanding of their characterization, using techniques such as transmission electron microscope, FTIR, X-ray diffraction, scanning electron microscope EDX, and so on. This volume also highlights uses in environmental remediation, environmental biosensors and environmental protection. It also emphasizes the significance of nanobiotechnology to a series of medical applications viz., diagnostics, and therapeutics stem cell technology, tissue engineering enzyme engineering, drug development and delivery. In addition this book also offers a distinctive understanding of nanobiotechnology from researchers and educators and gives a comprehensive facility for future developments and current applications of nanobiotechnology.




Dr. Indu Bhushan Sharma, working as Assistant Professor in the School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India. He has more than 10 years of teaching experience at University level. His area of research is focused toward Isolation and Purification of Industrial important Microbial Enzymes, Fermentation, Biotransformation and Nanotechnology. He has published more than 20 papers in reputed SCI & high Impact Factor Journals. He is Associate Editor of the Journal 3 Biotech and Annals of Biotechnology and also reviewer of many reputed Journals. He is life member of the Biotech Research Society of India, Society of Biologists, Annual member of Indian Science Congress and Danish Microbiological Society. He did his Ph.D in Biochemistry from IIIM-CSIR, Jammu and Kurukshetra University, Haryana (India). Dr. Sharma is also recipients of prestigious 'Raman Fellowship' awarded by University Grants Commission (UGC), Govt. of India for the year 2015-16 for Post-Doctoral Research in Virginia Commonwealth University, Richmond, Virginia, USA.  


Dr. Vivek Kumar Singh, joined Shri Mata Vaishno Devi University in 2008 as Assistant Professor of Physics under Faculty of Sciences. Dr. Singh completed his D. Phil. in 2010 from University of Allahabad under the esteemed supervision of Prof. A.K. Rai, Professor, Department of Physics, University of Allahabad, Allahabad. In last decade, Dr. Singh worked extensively on applications of Laser-Induced Breakdown Spectroscopy (LIBS) for the study of several biological specimens (gallstones, kidney stones, teeth, bones etc). His research interests are in the area of Laser and Spectroscopy. His current research interests include multi-spectroscopy studies of biological samples, organic samples, medicinal plant samples, agricultural samples and food products etc. Trace and heavy metal determination in bio samples, food products (for quality check), and medicinal plant samples are the major thrust areas of Dr. Singh. He is also working in field of Nano-science and Nano-technology for its application to plants and in other areas too. He has published more than 60 International research papers and reviews articles in renowned International Journals with good impact factor. He is also life member of several academic and professional societies. Dr. Singh is also recipients of  'UGC- Raman Fellowship for the year 2015-16 for Post-Doctoral Research in Lawrence Berkeley National Laboratory (LBNL) operated by University of California, Berkley, USA.  

Dr. Durgesh Kumar Tripathi, is working as Assistant Professor, in the Amity Institute of Organic Agriculture, Amity University Uttar Pradesh. He did M. Sc and Ph. D in Botany. He has published many research papers in reputed journals with high impact factor and in editorial board member teams of many International journals. He is also life member of several academic and professional societies.

Preface 6
Contents 8
Chapter 1: Nanoparticles and Plant Interaction with Respect to Stress Response 11
1.1 Introduction 11
1.2 The Nanoparticle and Its Role in Plant Stress 13
1.3 Mechanistic Interaction of Nanoparticles in Plant Stress 14
1.3.1 Phytotoxicity Mechanism of Nanoparticles 15
1.3.2 Uptake Mechanism of Nanoparticles 17
1.3.3 Translocation Mechanism of Nanoparticles 17
1.3.4 Interaction Mechanism of Nanoparticles Leading to Stress 18
1.4 Conclusions and Future Prospects 19
References 20
Chapter 2: Nanoencapsulation Technology: Boon to Food Packaging Industries 26
2.1 Introduction 26
2.2 Nanomaterials Used for Food Packaging 27
2.2.1 Lipid-Based Encapsulation of Essential Oils 27
2.2.1.1 Emulsions 28
2.2.1.2 Solid Lipid Nanoparticle (SLNs) 29
2.2.1.3 Liposome as Nanocarriers of Bioactive Molecules 29
2.2.1.4 Micelles 29
2.2.2 Polymer-Based Encapsulation of Essential Oils 30
2.3 Active Packaging of EO Nanoparticles as Food Protectant 31
2.4 Mode of Action of Nanoparticles 34
2.5 Factors Controlling the Stability of Nanoparticles in Food System 35
2.5.1 Free Energy of Different Phases 36
2.5.2 Droplet Aggregation and Particle Size 36
2.5.3 Emulsifier Type 36
2.5.4 Ionic Strength and pH 37
2.5.5 Thermal Processing 37
2.6 Nanoparticles as Active Biosensor for Detection of Food Contaminants (Chemicals and Food-Borne Pathogens) 37
2.7 Application of Nanoparticles in Different Food Sectors 38
2.8 Safety Issues Associated with Application of Nanotechnology in Food Packaging/Food Preservation 39
2.9 Future Prospective 42
References 42
Chapter 3: Ecotoxicity of Metallic Nanoparticles and Possible Strategies for Risk Assessment 50
3.1 Introduction 50
3.2 Synthesis of Metallic Nanoparticles 51
3.3 Application of Nanoparticles 51
3.4 Toxicity of Metallic Nanoparticles 53
3.4.1 Uptake of Metallic Nanoparticles 55
3.4.2 Mode of Action of Nanoparticles 55
3.5 Ecotoxicology Assessment and Possible Strategies 56
3.6 Conclusions 56
References 57
Chapter 4: Tripartite Interaction Among Nanoparticles, Symbiotic Microbes, and Plants: Current Scenario and Future Perspectives 63
4.1 Introduction 63
4.2 Nanoparticles Versus Plant Growth 64
4.3 Nanoparticles Versus Soil Microorganisms 65
4.4 Nanoparticles Versus Symbioses 66
4.4.1 ZnO Nanoparticle Versus Symbioses 66
4.4.2 Ag Nanoparticle Versus Symbioses 67
4.4.3 CeO2 Nanoparticle Versus Symbioses 67
4.4.4 Fe3O4 Nanoparticle Versus Symbioses 68
4.5 Conclusions 68
4.6 Future Perspectives 69
References 70
Chapter 5: Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes 73
5.1 Introduction 73
5.2 Effect of Nanoparticles on Plants 75
5.2.1 Effects of NPs on Photosynthesis 78
5.3 Effect of Nanoparticles on the Soil Microbial Community 78
5.4 Impact of Carbon Nanotubes on Plants 80
5.4.1 Effect of CNTs on Photosynthesis Mechanism 83
5.5 Effect of CNTs on Soil Microbial Community 84
5.6 Future Possibilities 85
References 85
Chapter 6: Recent Trends and Advancement Toward Phyto-mediated Fabrication of Noble Metallic Nanomaterials: Focus on Silver, Gold, Platinum, and Palladium 94
6.1 Introduction 94
6.2 An Overview on Phyto-mediated Fabrication of Metallic NMs/Noble Metallic NMs 98
6.3 Recent Fabrication Trends of Silver, Gold, Platinum, and Palladium NMs Using Plant System 100
6.4 General Mechanism of Silver, Gold, Platinum, and Palladium NM Fabrication in Plant System 103
6.5 Key Factors/Parameters for Optimal Fabrication of Silver, Gold, Platinum, and Palladium 103
6.6 Characterization of Metallic NMs (Silver, Gold, Platinum, and Palladium) 104
6.7 Conclusions and Future Perspective 105
References 106
Chapter 7: Development of Environmental Biosensors for Detection, Monitoring, and Assessment 113
7.1 Introduction 113
7.2 Biosensing Techniques 116
7.2.1 Biosensor System 116
7.2.2 Classification of Biosensors 116
7.2.2.1 On the Basis of Bio-recognition Element 117
Immunosensors 117
Enzymatic Biosensors 118
Whole-Cell Based Biosensors 118
Genosensors 118
Aptasensors 119
Biomimetic Biosensors 119
7.2.2.2 On the Basis of the Transduction Principle 119
Electrochemical Biosensors 120
Optical Biosensors 120
Piezoelectric Biosensors 121
Thermometric Biosensors 121
Magnetic Biosensors 121
7.3 Environmental Biosensors 121
7.3.1 Pesticides 122
7.3.2 Pathogens 122
7.3.3 Potentially Toxic Elements or Heavy Metals 126
7.3.4 Toxins 126
7.3.5 Endocrine-Disrupting Chemicals (EDCs) 126
7.3.6 Other Environmental Compounds 127
7.4 Summary 127
References 127
Chapter 8: Nano-Based Materials and Their Synthesis 132
8.1 Introduction 132
8.2 Green Synthesis of MNPs (Biological/Bioreduction) 133
8.3 Green Synthesis of Metallic Nanoparticles Using Plant Extracts 135
8.4 Nanoparticle Synthesis Using Microorganisms 135
8.5 Conclusion 141
References 141
Chapter 9: Nano-based Composites and Their Synthesis 146
9.1 Introduction 146
9.2 Synthesis of Nanocomposites 148
9.2.1 Ceramic Matrix Nanocomposites (CMNC) 148
9.2.1.1 Synthesis of Ceramic CNT Nanocomposites 148
9.2.2 Metal Matrix Nanocomposites 149
9.2.2.1 Synthesis of CNT-Reinforced Metal Matrix Composites 155
9.2.3 Polymer Nanocomposites 156
9.2.3.1 In Situ Polymerization 157
9.2.3.2 Melt Processing 157
9.2.3.3 Solution Blending 158
9.2.3.4 Other Techniques 158
9.2.3.5 Synthesis of Polymer-CNT Nanocomposites 160
9.3 Conclusion 160
References 163
Chapter 10: Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation 167
10.1 Chitosan 167
10.2 Why Chitosan Is Useful in Enzyme Immobilization 168
10.3 Nanoparticles 168
10.3.1 Methods of Preparation of Nanoparticles 169
10.3.2 Methods of Preparation of Chitosan Nanoparticles for Enzyme Immobilization 169
10.3.2.1 Reverse Micelle Method 169
10.3.2.2 Ionic Cross-Linking Method 170
10.3.2.3 Coprecipitation Method 170
10.3.2.4 Emulsion Cross-Linking Method 170
10.3.2.5 Ionotropic Gelation Method 170
10.4 Enzyme Immobilization 170
10.4.1 Methods of Preparation of Immobilized Enzymes 171
10.4.1.1 Support Binding 171
10.4.1.2 Cross-Linking 171
10.4.1.3 Entrapment 172
10.4.2 Supports to the Enzymes 172
10.4.2.1 Classic Materials 172
Inorganic Materials 172
Mineral Materials 173
Carbon-Based Materials 173
Organic Materials 173
10.4.2.2 New Materials 173
Synthetic Materials 173
Biopolymers 174
10.4.3 Immobilization of Enzyme Through Chitosan Nanoparticles 174
10.4.3.1 ?-Galactosidase 174
10.4.3.2 Cellulase 175
10.4.3.3 Glucose Oxidase 175
10.4.3.4 Invertase 176
10.4.3.5 Glucoamylase 176
10.4.3.6 Glucosidase 176
10.4.3.7 Xylanase 176
10.4.3.8 ?-Amylase 177
10.4.3.9 Pectinase 177
10.4.3.10 Laccase 177
10.4.3.11 Lipase 178
10.4.3.12 Protease 179
10.4.3.13 Alcohol Dehydrogenase 180
10.4.3.14 Penicillin G Acylase 180
10.4.3.15 Serratiopeptidase 180
10.5 Probiotics 183
10.5.1 Probiotic Encapsulation 183
10.5.2 Methods of Encapsulation 184
10.5.3 Techniques of Coated Capsules 184
10.5.4 Probiotics Encapsulation in Chitosan-Based Nanomaterials 184
10.6 Conclusion 186
References 186
Chapter 11: Nano-Based Drug Delivery Tools for Personalized Nanomedicine 193
11.1 Introduction 193
11.2 Applications of Nanotechnology in Biological Sciences 194
11.2.1 Drug Delivery in Cancer 194
11.2.1.1 Gelatin Nanoparticle 194
11.2.1.2 PEGylated Liposomes 194
11.2.1.3 Nanovaccines 195
11.2.2 Phytochemical-Based Nanodrugs 195
11.2.2.1 Nanocurcumin 195
11.2.2.2 Nano-ginseng 196
11.2.2.3 Nano-quercetin 196
11.2.2.4 pH-Dependent Nanotools 196
11.3 Disease Diagnostics 197
11.3.1 Magnetic and Electrochemical-Based Nanoparticles 197
11.3.2 Gold Nanoparticles 197
11.3.3 Nitric Oxide-Embedded Nanoparticles 198
11.3.4 Sunscreen 198
11.3.5 Personalized Nanomedicine 199
11.3.6 Personalized Nanodevices 200
11.3.7 Microfluidic Channels on Bar Charts of Glass Chip 200
11.3.8 Proteinticles 200
11.3.9 Aptamers 201
11.4 Conclusion 201
References 202
Chapter 12: Nanotechnology as Potential and Innovative Platform Toward Wastewater Treatment: An Overview 204
12.1 Introduction 204
12.2 Fabrication of Nanoparticles: Physical, Chemical, and Biogenic Approaches 206
12.3 Characterization Techniques of Fabricated Nanoparticles 208
12.4 Nanoparticles: Potential Platform for the Removal of Water Contaminants 211
12.5 Limitations of Nanoparticle-Based Wastewater Treatment 216
12.6 Conclusion 217
References 217
Chapter 13: Solid Lipid Nanoparticles 224
13.1 Introduction 224
13.2 Composition of Solid Lipid Nanoparticles 226
13.2.1 Lipids 226
13.2.2 Surface-Active Compounds (SACs) 227
13.3 Techniques Used for Preparation 227
13.3.1 High-Pressure Homogenization 227
13.3.1.1 Hot Homogenization 229
13.3.1.2 Cold Homogenization 230
13.3.2 Ultrasound Dispersion/Ultrasonication 231
13.3.3 Solvent Emulsification/Evaporation 231
13.3.4 Microemulsion-Based Technique 232
13.3.5 Double Emulsion Method 233
13.3.6 Membrane Contactor Technique 234
13.3.7 Supercritical Fluid (SCF) Technology 235
13.4 Characterization of Solid Lipid Nanoparticles 236
13.4.1 Physical Properties 236
13.4.1.1 Size and Its Distribution 236
Photon Correlation Spectroscopy 237
Laser Diffraction (LD) Spectroscopy 238
13.4.2 Microscopic Methods 238
13.4.2.1 Shape and Surface Morphology 238
Electron Microscopy 239
Atomic Force Microscopy 239
13.4.3 Surface Charge 240
13.4.4 Drug Encapsulation and Loading Capacity 241
13.4.4.1 Determination of Incorporated Drug 241
13.4.5 Drug Localization and Drug Release 241
13.5 Applications of Solid Lipid Nanoparticles 243
13.5.1 Parenteral Delivery 243
13.5.2 Oral Delivery 243
13.5.3 Transdermal and Topical Use 244
13.5.4 Pulmonary, Nasal and Ocular Administration 244
13.6 SLNs as a Carrier for Site-Specific Delivery 245
13.6.1 Application in Gene Delivery 245
13.6.2 SLN as Carriers for Peptides and Protein Drugs 246
13.6.3 Lipid Nanoparticle as a Carrier for Vaccine 246
13.7 Stability 247
13.8 Conclusions 247
References 248
Chapter 14: Nanotechnology Applications and Synthesis of Graphene as Nanomaterial for Nanoelectronics 253
14.1 Introduction 253
14.1.1 Types of Nanomaterials 256
14.1.2 Applications of Nanotechnology 258
14.1.3 Advantages of Nanotechnology 258
14.2 Graphene as Nanotechnology Material 259
14.3 Graphene and Its Future Aspects 262
14.3.1 Properties of Graphene 263
14.3.2 Different Types of Nanostructures and Methods of Graphene Preparation 264
14.3.3 Characterization of Graphene Material 266
14.3.4 Potential Applications of Graphene (Hua-Qiang et al. 2013 Awano 2009
14.4 CNT and Its Growing Demand 268
14.5 Conclusion 269
References 270
Chapter 15: Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology 272
15.1 Introduction 272
15.2 Origin of Nanotechnology: The Science of Small Where Small Is Effective 275
15.3 Rise of Nanomaterials and Its Applications in Diverse Areas 275
15.4 Nanotechnology: The Future of Renewable Energy 280
15.4.1 Benefits and Applications of Nanotechnology in the Renewable Energy Sector 280
15.4.2 Solar Energy 280
15.4.3 Solar Photovoltaic Cells 281
15.5 Nanofluids for Solar Energy Applications 283
15.5.1 Solar Cells 284
15.5.2 Dye-Sensitized Solar Cells (DSSC/DSC/DYSC/Grätzel Cell) 285
15.5.3 Dye-Sensitized Nanocrystalline Solar Cells 286
15.5.4 Organic Polymer-Derived PV Solar Cell (OPV) 287
15.5.5 Hot Carrier Solar Cells 287
15.6 Hydrogen Energy 288
15.6.1 Fuel Cells 288
15.6.2 Diesel Engine 290
15.6.3 Biomass/Bioenergy 290
15.6.4 Bio-oil 290
15.6.5 Bio-diesel 291
15.6.6 Wind Energy 291
15.6.7 Geothermal Energy 292
15.6.8 Tidal Energy 292
15.7 Conclusions 293
References 294
Chapter 16: Wastewater and Industrial Effluent Treatment by Using Nanotechnology 299
16.1 Introduction 299
16.2 Existing Pollutants and Their Traditional Treatment Technologies 301
16.3 Advanced Technologies for Wastewater Treatment 302
16.3.1 Membrane Filtration 303
16.3.2 Nanotechnology 303
16.3.3 Automatic Variable Filtration (AVF) Technology 303
16.3.4 Advanced Photo-Oxidation Process (APOP) 303
16.3.5 Microbial Fuel Cells 304
16.3.6 New Urban Sanitation Technology 304
16.3.7 Natural Treatment Systems (NTSs) 304
16.3.8 Coke Oven (CO) By-Product Wastewater Treatment 304
16.3.9 Urine Separating Process 304
16.4 Nanotechnology 305
16.4.1 What Is Nanotechnology? 306
16.4.2 Nanotechnology in Wastewater Treatment 306
16.4.2.1 Adsorption 307
16.4.2.2 Nanofiltration 307
16.4.2.3 Nanofiber 308
16.4.2.4 Photocatalysis 308
16.4.2.5 Nanocatalysts 308
16.4.2.6 Sensing and Monitoring 309
16.5 Pros and Cons of Nanotechnology 309
16.6 Future Aspects 311
References 312
Chapter 17: Biomolecular and Cellular Manipulation and Detection (Nanofluidics and Micro- and Nanotechnologies in Integrative Biology) 314
17.1 General Introduction 314
17.2 Buckyballs and Nanotubes 315
17.2.1 Application of Nanotubes in Integrative Biology 316
17.2.1.1 Sending Signals to Nerve Cells via Nanotubes/Neuron-Nanotube Electric Interface 316
17.2.1.2 Cell Membrane Interaction with Nanotube Transistor 318
17.2.1.3 Artificial Retina 321
17.3 Nanobots 322
17.4 Nanoactuators 323
17.5 Nanobombs 324
17.6 Nanowires 325
17.7 Lab-on-Chip 327
17.8 Organs-on-Chip 327
17.9 Conclusion 329
References 329
Chapter 18: Bio-Based Nano-Lubricants for Sustainable Manufacturing 332
18.1 Introduction 332
18.1.1 Types of Cutting Fluids 334
18.1.1.1 Neat Cutting Oils 334
18.1.1.2 Water-Soluble Fluids 335
18.1.1.3 Emulsifiable Oils 335
18.1.1.4 Chemical (Synthetic Fluids) 335
18.1.1.5 Semisynthetic Fluids 335
18.1.2 Methods of Application of Cutting Fluids in Conventional Machining 335
18.1.2.1 Cryogenic Cooling 336
18.1.2.2 Solid Lubricant/Coolant 336
18.1.2.3 High-Pressure Cooling Technique 337
18.1.2.4 Air/Vapour/Gas Cooling 337
18.1.2.5 Minimum Quantity Lubrication 338
18.1.2.6 Nano-Enriched Cutting Fluids 338
18.1.3 MQL (Minimum Quantity Lubrication) Application Technique 338
18.1.3.1 Internal Application 339
18.1.3.2 External Application 339
18.2 Vegetable Oil-Based Lubricants 340
18.2.1 Physicochemical Properties of Vegetable Oil-Based Lubricants 340
18.2.1.1 Viscosity 340
18.2.1.2 Viscosity Index 340
18.2.1.3 Flash Point 341
18.2.1.4 Pour Point 341
18.2.1.5 Oxidation Stability 341
18.3 Role of Nanoparticles in Cutting Fluids 342
18.3.1 Mechanism of Nanolubrication 343
18.3.1.1 Ball Bearing/Rolling/Sliding Effect 343
18.3.1.2 Polishing Mechanism 343
18.3.1.3 Mending Mechanism 343
18.3.1.4 Formation of Tribofilm 343
18.3.2 Preparation of Nanofluids 344
18.3.2.1 Two-Step Method 344
18.3.2.2 One-Step Method 344
18.3.3 Importance of Nanofluid Stability 345
18.4 Nanoparticle-Enriched Cutting Using MQL 345
18.4.1 MQL-Assisted Drilling with Nanoparticles 345
18.4.2 MQL-Assisted Grinding with Nanoparticles 347
18.4.3 MQL-Assisted Turning with Nanoparticles 353
18.4.4 MQL-Assisted Milling with Nanoparticles 362
18.5 Future Scope 367
References 370
Chapter 19: Nanomaterials Used for Delivery of Bioactives 380
19.1 Introduction 380
19.2 Classification of Nanocarriers 387
19.2.1 Liposomes 387
19.3 Particulate Carriers 389
19.3.1 Polymeric Nanoparticles 389
19.3.2 Solid Lipid Nanoparticles (SLNs) 393
19.4 Inorganic Nanocarriers 395
19.4.1 Silica Nanoparticles 395
19.4.2 Gold Nanoparticles 398
19.4.3 Calcium Phosphate Nanoparticles 398
19.5 Concluding Remarks 399
References 400
Chapter 20: Efficacy of Nano-phytochemicals Over Pure Phytochemicals Against Various Cancers: Current Trends and Future Prospects 405
20.1 Phytochemicals and Nano-phytochemicals as Potent Anticancer Agents 405
20.2 The Advantage of Nano-phytochemicals Over Pure Phytochemicals 410
20.2.1 Role of Nanoform Phytochemicals in Cancer Research 410
20.2.1.1 Broccoli Gold Nanoparticles 412
20.2.1.2 Gold Quercetin Nanoparticles 412
20.2.1.3 Curcumin Nanoparticles 412
20.2.1.4 Selaginella doederleinii Leaf Nanoparticles 414
20.2.1.5 Nigella sativa Nanoformulation 415
20.2.1.6 Honokiol Nanoparticle 415
20.2.1.7 Silibinin-Loaded Nanoparticle 416
20.2.1.8 Ursolic Acid Nanoparticle 416
20.2.1.9 ?-Lapachone Nanoparticle 417
20.2.1.10 Ferulic Acid Nanoparticles 417
20.3 Conclusion 417
References 418
Index 423

Erscheint lt. Verlag 22.2.2020
Reihe/Serie Nanotechnology in the Life Sciences
Nanotechnology in the Life Sciences
Zusatzinfo IX, 434 p. 67 illus., 53 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Technik
Schlagworte Biomedical nanotechnology • Bionanoelectronics • nanobiotechnology • nanomedicine • nanotoxicity • systematic botany
ISBN-10 3-030-34544-0 / 3030345440
ISBN-13 978-3-030-34544-0 / 9783030345440
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich