Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Corrosion and Fouling Control in Desalination Industry (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
XV, 406 Seiten
Springer International Publishing (Verlag)
978-3-030-34284-5 (ISBN)

Lese- und Medienproben

Corrosion and Fouling Control in Desalination Industry -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book addresses two critical problems that plague materials that make up components in both desalination and cooling water systems: corrosion, and fouling. The book addresses various types and components of industrial desalination technologies with solutions for controlling corrosion, scaling and biofouling. Issues unique to desalination systems, vital for the production of clean water, are considered as well.  Green technologies are discussed throughout, along with environmental and economic considerations. The book presents solutions to the problems encountered by internal and external parts of these systems and will aid professionals that design, operate, and maintain them. It will be valuable to professionals in the materials, corrosion, electrochemical and wastewater industries, as well as chemical engineers.

  • Addresses the corrosion issues facing the conventional and modern water desalination systems;
  • Discusses the causes and remediation of problems caused by corrosion, scaling, and biofouling in water treatment;
  • Offers green solutions, thereby minimizing environmental impact while increasing control and productivity of water systems;
  • Suitable for professionals working with water desalination plants, materials scientists and corrosion engineers.



Viswanathan S. Saji is a Research Scientist III at the Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia. He received PhD (2003) degree from the University of Kerala, India. He was a Research Associate at Indian Institute of Technology (IIT), Bombay (2004-2005) & Indian Institute of Science (IISc), Bangalore (2005-2007), Postdoctoral Researcher at Yonsei University (2007-2008) & Sunchon National University (2009), Senior Research Scientist at Ulsan National Institute of Science and Technology (UNIST) (2009-2010), Research Professor at Chosun University (2008-2009) & Korea University (2010-2013), and Endeavour Research Fellow at University of Adelaide (2014). He has authored 65 journal publications, and contributed 5 books and 10 book chapters. His research interest lies in electrochemistry, corrosion science, and nano/bio/energy materials.

Ahmad Sorour is Director of the Center of Research Excellence in Corrosion at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia. He is also Assistant Professor in the Department of Mechanical Engineering at KFUPM, Dhahran, Saudi Arabia. Dr. Sorour received his Ph.D. (2014) degree in Materials Engineering from McGill University, Montreal, QC, Canada. He completed his MS (2008) and BS (2005) in Mechanical Engineering at KFUPM, Dhahran, Saudi Arabia. His research interests lie in the areas of materials, corrosion, tribology, and coatings. Dr. Sorour has been a member in several funded projects carried out at KFUPM and has taught different undergraduate and graduate courses in Materials Science and Engineering. He supervised many graduate students and has served as a reviewer for many peer-reviewed journals.  Dr. Sorour is a member of several professional affiliations such as NACE and ASM as well.

Abdelkader Meroufel received the M.Sc. (2003), and Ph.D. (2006) degrees from La Rochelle University, France. He was assistant professor at La Rochelle (2006-2007) and Jazan University (2009-2012). In between he worked as a post-doctoral fellow at the French Petroleum Institute (IFP), France. Later, he moved to the Saline Water Conversion Corporation (SWCC), the public company operating and maintaining Desalination plants in Saudi Arabia, where he was a Corrosion specialist. In 2014, He was promoted as Head of Corrosion department at Desalination Technologies Research Institute (DTRI). He served as 2nd General Director Deputy from 2016 to 2018. Presently he is working as a Corrosion Researcher at DTRI. He has authored 25 scientific publications. His research interest lies in corrosion science and engineering, advanced materials development and degradation modes.

Preface 5
Acknowledgments 7
Contents 8
List of Abbreviations 10
Contributors 12
Part I: Desalination Processess 15
Chapter 1: Desalination: Concept and System Components 16
1.1 Introduction 16
1.2 Desalination Concept 17
1.3 Desalination Techniques 18
1.3.1 Membrane Technologies 19
1.3.1.1 Reverse Osmosis 20
1.3.1.2 Electrodialysis and Electrodialysis Reversal 21
1.3.2 Thermal Technologies 22
1.4 Energy Consumption 25
1.4.1 Energy Conservation Practices 25
1.4.1.1 Energy Recovery Devises 25
1.4.1.2 Dual Operation of Desalination and Power Generation Plants 26
1.4.2 Nuclear Energy Use 27
1.4.3 Renewable Energy Use 28
1.4.3.1 Solar Energy 28
1.4.3.2 Wind Energy 29
1.5 Environmental Sustainability 30
1.5.1 Environmental Issues 30
1.5.2 Concentrate Management 30
1.6 The Economics of Desalination 32
1.6.1 Desalination Implementation Costs 33
1.6.1.1 Desalination Plant Construction Costs 33
1.6.1.2 Desalination Plant Operating Maintenance Costs 33
1.6.2 Desalination Cost Estimation Models 35
1.6.2.1 Desalination Economic Evaluation Program (DEEP-3.0) 35
1.6.2.2 WTCost II Model 35
1.7 Futuristic Approaches 35
1.8 Conclusions and Outlook 37
References 38
Chapter 2: Thermal Desalination: Performance and Challenges 41
2.1 Introduction 41
2.2 Thermal Desalination Technologies 42
2.2.1 Multi-Stage Flash (MSF) Desalination 42
2.2.1.1 Process Description 42
2.2.1.2 Performance Indicators 43
2.2.1.3 MSF Challenges 44
2.2.2 Multi-Effect Desalination 47
2.2.2.1 Process Description 47
2.2.2.2 Performance Indicators 49
2.2.2.3 MED Challenges 52
2.3 Thermal Desalination Development Efforts 53
2.3.1 Desalination Units with Enhanced Configuration 53
2.3.2 Hybridization 54
2.4 Conclusions and Outlook 56
References 57
Chapter 3: Reverse Osmosis Desalination: Performance And Challenges 60
3.1 Introduction 60
3.2 Process Components Performance and Challenges 61
3.2.1 Intake System 61
3.2.2 Pretreatment System 64
3.2.3 High-Pressure Pumping (HPP) System 67
3.2.4 RO Membrane System 72
3.2.4.1 Membrane Configuration and Chemistry 73
3.2.4.2 Membrane Arrangements 75
3.2.4.3 Membrane Performance 75
3.2.4.4 Membrane Fouling 75
3.3 Recent Developments 77
3.4 Conclusions and Outlook 78
References 79
Chapter 4: Advancements in Unconventional Seawater Desalination Technologies 81
4.1 Introduction 81
4.2 Membrane Distillation (MD) 82
4.2.1 Principles 82
4.2.2 MD Membranes 83
4.2.3 MD Configurations 83
4.2.4 Challenges and Opportunities 83
4.3 Forward Osmosis (FO) 86
4.3.1 Principles 86
4.3.2 FO System Components 87
4.3.2.1 Draw Solution 87
4.3.2.2 Membrane Material 87
4.3.3 Challenges and Opportunities 88
4.4 Adsorption Desalination 89
4.4.1 Principles 89
4.4.2 Recent Advancements 92
4.4.3 Challenges and Opportunities 94
4.5 Freeze Desalination 94
4.5.1 Principles 94
4.5.2 Recent Advancements 96
4.5.3 Challenges and Opportunities 98
4.6 Conclusions and Outlook 98
References 100
Part II: Corrosion in Desalination 106
Chapter 5: Corrosion in Thermal Desalination Processes: Forms and Mitigation Practices 107
5.1 Introduction 107
5.2 Economics of Equipment Integrity in Thermal Desalination Industry 108
5.3 Reliability Philosophy Within Thermal Desalination Industry 110
5.4 Corrosion Forms in Thermal Desalination Plants 111
5.4.1 Saline Water Corrosion 111
5.4.2 Vapor Phase Corrosion 119
5.4.3 Corrosion Under Insulation (CUI) 122
5.4.4 Microbial Induced Corrosion (MIC) 123
5.4.5 Miscellaneous Corrosion 124
5.5 Corrosion Control Practices 126
5.5.1 Environment Control 126
5.5.2 Material Selection 127
5.5.3 Monitoring 131
5.6 Conclusions and Outlook 131
References 133
Chapter 6: Corrosion in Reverse Osmosis Desalination Processes: Forms and Mitigation Practices 138
6.1 Introduction 138
6.2 Economics of Equipment Integrity 139
6.3 Reliability Philosophy 139
6.4 Corrosion Forms in RO Desalination Plants 142
6.4.1 Pitting Corrosion 142
6.4.2 Crevice Corrosion 145
6.4.3 Microbiological Influence Corrosion (MIC) 148
6.5 Mitigation Practices 150
6.5.1 Environment Control 150
6.5.2 Material Selection 151
6.5.3 Electrochemical and Surface Treatment 152
6.5.4 Non-metallic Solutions 153
6.6 Conclusions and Outlook 153
References 154
Chapter 7: Environmentally Assisted Cracking of Stainless Steels in Desalination 159
7.1 Introduction 159
7.2 Environmental Assisted Cracking Mechanisms 160
7.2.1 Stress Corrosion Cracking 160
7.2.2 Corrosion Fatigue 165
7.3 Environmental Assisted Cracking on Stainless Steels 166
7.4 Stress Corrosion Cracking of Static Equipment 171
7.5 Corrosion Fatigue of Rotating Equipment 173
7.6 Mitigation Practices 174
7.6.1 Material Selection 174
7.6.2 Surface and Materials Engineering 174
7.6.3 Operation and Maintenance Practices 175
7.7 Conclusions and Outlook 176
References 176
Chapter 8: Corrosion Monitoring in Desalination Plants 180
8.1 Introduction 180
8.2 Significance of Corrosion Monitoring in Desalination Plants 181
8.3 Corrosion Monitoring Techniques 182
8.3.1 Direct Intrusive Techniques 183
8.3.1.1 Physical Techniques 183
8.3.1.2 Electrochemical Techniques 185
8.3.2 Indirect Corrosion Monitoring Techniques 187
8.3.2.1 Corrosion Potential Method 187
8.3.2.2 Water Quality Analyses 188
8.3.2.3 Residual Inhibitor Analysis 189
8.3.3 Microbiologically Induced Corrosion (MIC) Monitoring 190
8.3.3.1 Planktonic Organisms Monitoring 190
8.3.3.2 Sessile Organisms Monitoring 190
8.3.3.3 Biological Assessment 191
8.3.3.4 Deposition Monitors 191
8.3.3.5 Detailed Coupon Examinations 192
8.3.3.6 Electrochemical Monitoring 192
8.4 Conclusions and Outlook 192
References 193
Chapter 9: Chemical Additives for Corrosion Control in Desalination Plants 195
9.1 Introduction 195
9.2 Inhibitors for Corrosion Control in Desalination Plants 196
9.2.1 Inhibitors for Corrosion Control of Carbon and Stainless Steels 198
9.2.2 Inhibitors for Corrosion Control of Copper and its Alloys 199
9.2.3 Inhibitors for Corrosion Control of Titanium 200
9.2.4 Inhibitors for Corrosion Control of Ductile Ni-Resist Cast Iron 200
9.3 Inhibitors for Microbial Influenced Corrosion Control 203
9.4 Oxygen Scavengers 206
9.5 Conclusions and Outlook 206
References 207
Chapter 10: Corrosion Control during Acid Cleaning of Heat Exchangers 212
10.1 Introduction 212
10.2 Thermal Desalination Heat Exchanger Configurations 213
10.3 Fouling Chemistry and the Descalants 214
10.4 Acid Cleaning Procedures 215
10.5 Corrosion Prevention during Acid Cleaning 216
10.5.1 Acid Choice 216
10.5.2 Corrosion Inhibitors 220
10.6 Conclusions and Outlook 224
References 224
Chapter 11: Advanced Corrosion Prevention Approaches: Smart Coating and Photoelectrochemical Cathodic Protection 228
11.1 Introduction 228
11.2 Smart Coatings 229
11.2.1 Polymer-Based Nano/Microcapsules 230
11.2.2 Host-Guest Chemistry-Based 231
11.2.3 Inorganic Clay-Based 235
11.2.4 Polyelectrolyte-Based 236
11.3 Photoelectrochemical Cathodic Protection 238
11.4 Conclusions and Outlook 245
References 245
Part III: Fouling in Desalination 251
Chapter 12: Inorganic Scaling in Desalination Systems 252
12.1 Introduction 252
12.2 Scaling in Seawater Desalination Processes 253
12.2.1 Pressure Driven Processes 254
12.2.2 Thermal Desalination Processes 256
12.3 Scaling Mechanism 256
12.3.1 Nucleation 257
12.3.2 Scale Formation 258
12.3.3 Factors Affecting Scale Formation 259
12.3.3.1 Effect of Temperature 259
12.3.3.2 Effect of pH 259
12.3.3.3 Effect of Ionic Strength 260
12.4 Scaling Prediction 260
12.5 Membrane Scaling Control Strategies 263
12.5.1 Surface Modifications and Novel Membrane Materials 263
12.5.2 Physical and Chemical Cleaning 263
12.5.3 Pre-treatment Method 264
12.6 Conclusions and Outlook 264
References 265
Chapter 13: Biofouling in RO Desalination Membranes 270
13.1 Introduction 270
13.2 Biofouling 272
13.2.1 Mechanism of Biofilm Formation 272
13.2.2 Role of Extracellular Polymeric Substances (EPS) 274
13.2.3 Crucial Factors 275
13.3 Biofouling Impact on RO Membranes Performance 277
13.3.1 Permeability Decline 278
13.3.2 Salt Rejection Decline 278
13.3.3 Increased Energy Consumption 281
13.4 Conclusions and Outlook 281
References 282
Chapter 14: Approaches Towards Scale Control in Desalination 285
14.1 Introduction 285
14.2 Approaches towards Scale Control 286
14.2.1 Chemical Treatment 288
14.2.1.1 Acid Treatment 288
14.2.1.2 Addition of Anti-scalants 289
14.2.1.3 Chemical Precipitation 292
14.2.2 Physical Methods of Scale Prevention 293
14.2.2.1 Periodic Pressurized Air Backwash 293
14.2.2.2 Pellet Softening (PS) 293
14.2.2.3 Feed Flow Reversal (FFR) 293
14.2.3 Physico-Chemical Methods of Scale Prevention 294
14.2.3.1 Removal of Chemical Species Using Ion Exchange 294
14.2.3.2 Membrane Pretreatment 295
14.3 Recent Approaches 297
14.4 Scaling in Non-conventional Desalination Systems 298
14.4.1 Forward Osmosis (FO) 299
14.4.2 Membrane Distillation (MD) 299
14.5 Conclusions and Outlook 300
References 302
Chapter 15: Chemical Methods for Scaling Control 306
15.1 Introduction 306
15.2 Inorganic Scales: Formation and Characterization 306
15.2.1 Calcium Carbonate 306
15.2.2 Calcium Sulfate 307
15.2.3 Amorphous Silica 310
15.2.4 Metal Silicates 311
15.2.4.1 Magnesium Silicate 311
15.2.4.2 Aluminium Silicate 312
15.2.5 Metal Sulfides (Zinc Sulfide) 313
15.2.6 Calcium Phosphate(s) 314
15.3 Main Categories of Scale Inhibitors 317
15.3.1 Phosphonic Acids 317
15.3.2 Anionic Polymers 319
15.3.3 Cationic Polymers 320
15.3.4 Neutral Polymers 320
15.3.5 “Green” Inhibitors 323
15.3.6 Tagged Scale Inhibitors 326
15.4 Inhibition Strategies 328
15.4.1 Threshold Inhibition 328
15.4.2 Dispersion 329
15.4.3 Chelation 330
15.5 Problems Associated with the Application of Scale Inhibitors 331
15.5.1 Calcium Tolerance (Ca2+ Stress) 331
15.5.2 Sensitivity of Scale Inhibitors to Oxidizing Biocides 332
15.5.3 Scale Inhibitor Entrapment and Inactivation 333
15.6 Conclusions and Outlook 333
References 334
Chapter 16: Technologies for Biofouling Control and Monitoring in Desalination 342
16.1 Introduction 342
16.2 Biofouling 343
16.2.1 Biofouling Species 345
16.2.2 Seasonality of Biofouling Settlement 345
16.2.3 Typical Problems Due to Biofouling 346
16.3 Impact of Biofouling on Desalination Plants 347
16.3.1 Operational 347
16.3.2 Financial 348
16.4 Control Methods 349
16.4.1 Physical Methods 349
16.4.1.1 Filtration 350
16.4.1.2 Water Velocity 350
16.4.1.3 Thermal Treatment 351
16.4.1.4 Sonic Technology 352
16.4.1.5 Ultraviolet 352
16.4.1.6 Oxygen Depletion 352
16.4.1.7 Physical Removal 353
16.4.2 Chemical Methods 353
16.4.2.1 Oxidizing Biocides 353
16.4.2.2 Non-oxidizing Biocides 364
16.4.2.3 Coatings in Water Intake Structures and Conduits 366
16.5 Monitoring 367
16.5.1 Microfouling Monitoring 367
16.5.2 Macrofouling Monitoring 368
16.6 Conclusions and Outlook 370
References 372
Chapter 17: Recent Strategies in Designing Antifouling Desalination Membranes 375
17.1 Introduction 375
17.2 Types of Fouling 376
17.2.1 Inorganic Fouling 376
17.2.2 Organic Fouling 377
17.2.3 Colloidal Fouling 377
17.2.4 Biofouling 378
17.3 Membrane Surface Properties Affecting Fouling 378
17.3.1 Wettability Properties of Membrane Surfaces 380
17.3.2 Membrane Surface Charge 381
17.3.3 Membrane Surface Roughness 382
17.4 Membrane Surface Modification Strategies 382
17.4.1 Surface Modification 382
17.4.1.1 Surface Coatings 383
17.4.1.2 Surface Grafting 385
17.4.2 Addition of Nanoparticles in the Membrane Matrix 388
17.5 Conclusions and Outlook 393
References 393
Index 398

Erscheint lt. Verlag 5.2.2020
Zusatzinfo XV, 406 p. 159 illus., 113 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Biofouling • Corrosion Chemistry • Corrosion Science • desalination technology • Elecrochemistry • Industrial Water Treatment • Materials Chemistry • Membrane science • scaling issues • water industry and water technology • Water science
ISBN-10 3-030-34284-0 / 3030342840
ISBN-13 978-3-030-34284-5 / 9783030342845
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen – Use-Cases – unternehmenseigene KI-Journey

von Ralf T. Kreutzer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 41,95