Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Solid Electrolytes for Advanced Applications (eBook)

Garnets and Competitors
eBook Download: PDF
2019 | 1st ed. 2019
VIII, 373 Seiten
Springer International Publishing (Verlag)
978-3-030-31581-8 (ISBN)

Lese- und Medienproben

Solid Electrolytes for Advanced Applications -
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.
This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries



Dr. Ramaswamy Murugan is Professor, Department of Physics, Pondicherry University, India. He received his Ph.D. in Physics from Pondicherry University, India in 1994. He was at University of Kiel, Germany as Guest researcher during 2005-2007. He was a visiting scientist at Shizuoka University Japan (2009), University of Texas Austin USA (2011) and Nagoya University, Japan (2013). His research focuses on the design, synthesis and characterization of functional materials in particular for applications in energy storage devices. His major contribution is the invention of zirconium containing lithium garnet oxide as electrolyte for the all solid state lithium battery. 

Prof. Dr. Werner Weppner is a longtime and highly recognized expert in the field of solid state electrochemistry since his doctorate at Dortmund University followed by a fruitful postdoctoral period at Stanford University, where he became involved in lithium battery electrodes and new solid electrolytes.  He then built up his solid state electrochemistry group at the new Max-Planck Institute for Solid State Research at Stuttgart and became a lecturer at Stuttgart University. In 1993 he took a Professorship and Chair for Solid State Ionics at the new Faculty of Engineering at the University of Kiel. His work covers a wide range of aspects of fast ion transport in solids from fundamental understanding, experimental techniques, materials characterization, development of new materials and principles with special attention to practical applications in lithium batteries, solid oxide fuel cells, sensors and electrochromic devices. The accumulated experience has final led to the discovery of the family of garnet type solid electrolytes. He is also involved in a large variety of academic and professional activities, among many others scientific conferences for the promotion of the field and Chief Editorship of the journal Ionics published by Springer.

Preface 5
Contents 7
Solid Electrolyte 9
1 Solid-State Electrolytes: Structural Approach 10
1.1 Introduction 10
1.2 Ion Conduction in Solids 12
1.3 Ion Conduction in 1D Solid-State Structure 17
1.3.1 Lithium Aluminosilicate 17
1.3.2 Apatites 18
1.4 Ion Conduction in 2D Solid-State Structure 19
1.4.1 Lithium Nitride (Li3N) 19
1.4.2 Na-?-Alumina 20
1.5 Ion Conduction in 3D Solid-State Structure 20
1.5.1 NASICON (Na3Zr2PSi2O12) 20
1.5.2 Oxide-Ion Conductors 22
1.5.3 Li-Ion Conducting Garnets 25
1.5.4 Proton Conductors 26
1.6 Conclusions 28
References 28
2 Synthesis of Nanostructured Garnets 32
2.1 Introduction 32
2.2 Synthesis by Solid-State Reaction Methods 35
2.3 Sol–Gel Synthesis Methods 40
2.4 Electrospinning Synthesis of LLZO Nanowires/Nanofibers 54
2.5 Cellulose Templating 58
2.6 Spray Pyrolysis 61
2.7 Co-precipitation Methods 63
2.8 Molten Salt Methods 64
2.9 Summary and Outlook 69
References 69
3 Air Stability of LLZO Electrolytes 76
3.1 Introduction 76
3.2 Origin of Air Stability Problems 77
3.3 Factors Affecting Air Stability 82
3.3.1 Synthetic Methods and Conditions 83
3.3.2 Materials Properties 84
3.3.3 Storage Conditions 88
3.4 Improvement Strategies 90
3.4.1 Mechanical Polishing 90
3.4.2 Use of Additives 90
3.4.3 Synthesis Methods and Environmental Control 91
3.4.4 Etching 92
3.5 Summary 93
References 94
4 Influence of Strain on Garnet-Type Electrolytes 97
4.1 Introduction 97
4.2 Experimental 99
4.2.1 Preparation of Materials 99
4.2.2 Structural Analysis 99
4.2.3 Electrochemical Analysis 100
4.3 Results and Discussion 101
4.3.1 Structural Analysis 101
4.3.2 Electrochemical Analysis 108
4.3.3 Influence of SPS Pressure 110
4.3.4 Influence of Stress on Performance of Solid-State Electrochemical Devices 113
4.4 Conclusion 114
References 114
5 Sintering Additives for Garnet-Type Electrolytes 117
5.1 Introduction 117
5.2 Sintering Additives Background 119
5.3 Sintering Additives Modifying Triple Point Grain Boundary and Grain Boundary 121
5.4 Sintering Additives of LLZ Garnet Solid Electrolytes Modified by Element Doping 122
5.5 Suitable Sintering Additives Alternatives 129
5.6 Conclusions 132
References 133
6 Deposition and Compositional Analysis of Garnet Solid Electrolyte Thin Films 135
6.1 Introduction 135
6.2 Wet-Chemical Deposition Processes 137
6.3 Deposition Processes from Vapor Phase 140
6.3.1 Physical Vapor Deposition (PVD) 140
6.3.2 Chemical Vapor Deposition 143
6.4 Compositional Analysis of Garnet Electrolytes 145
6.4.1 General Considerations 145
6.4.2 Electron Beam Analytical Techniques 146
6.4.3 Analytical Techniques Based on X-Rays 148
6.4.4 Ion Beam Analysis 149
6.4.5 Neutrons for Lithium Quantification 153
6.5 Summary 154
References 157
7 Ultrathin Garnet-Type Electrolytes 161
7.1 Introduction 161
7.2 Pulsed Laser Deposition (PLD) 162
7.3 Radio Frequency (RF) 162
7.4 Sol–Gel Method 164
7.5 Chemical Vapor Deposition (CVD) 167
7.6 Focused Ion Beam (FIB) Milling 167
7.7 Atomic Layer Deposition 168
7.8 Our Work-Wet Coating 169
References 171
8 Composite Electrolytes Based on Tetragonal Li7La3Zr2O12 for Lithium Batteries 173
8.1 Introduction 173
8.1.1 All-Solid-State Batteries 173
8.1.2 Lithium-Ion Solid Electrolytes 176
8.2 Composite Electrolytes 177
8.2.1 Composite Polymer Electrolytes 178
8.2.2 Glass–Ceramics 178
8.2.3 Sintering Additives and Glass–Ceramic Composites 179
8.3 Composite Electrolytes Based on Tetragonal Li7La3Zr2O12 181
8.3.1 Synthesis of the Composite Electrolytes 182
8.3.2 Composite Electrolytes Microstructure, Thermal Properties, and Conductivity 186
8.4 Summarizing 190
References 192
9 Li7La3Zr2O12 and Poly(Ethylene Oxide) Based Composite Electrolytes 200
9.1 Introduction 200
9.2 Concept of Polymer Electrolytes 201
9.2.1 Poly(Ethylene Oxide) Based Electrolytes 202
9.2.2 Concept of Composite Electrolytes 204
9.3 Composites Containing Li7La3Zr2O12 206
9.3.1 Composites with Granular LLZO 207
9.3.2 Composites with LLZO Scaffolds 210
9.3.3 Li-Ion Pathways in Composites and LLZO/PEO Interface 211
9.4 Summary and Outlook 213
References 215
Electrodes and Interfaces with Solid Electrolytes 221
10 Zero-Strain Insertion Materials for All-Solid-State Li-Ion Batteries 222
10.1 What Are Zero-Strain Insertion Materials? 222
10.2 Characteristics of LTO 223
10.3 Thermal Stability of Virtual ALIBs Using LTO 228
10.4 Zero-Strain Insertion Materials with Non-topotactic Reaction 230
10.5 A Nearly Zero-Strain Insertion Material for Positive Electrodes 236
10.6 Pseudo Zero-Strain Insertion Materials 239
10.7 Summary of Zero-Strain and Pseudo Zero-Strain insertion Materials 240
References 241
11 Interfacial Engineering for Lithium Metal Batteries Based on Garnet Structured Solid Fast Lithium-Ion Conductors 244
11.1 Introduction 244
11.1.1 All-Solid-State Lithium Metal Batteries 245
11.1.2 High Energy Density Lithium–Sulfur (Li–S) Batteries 248
11.2 Experimental 250
11.2.1 Preparation of All-Solid-State Lithium Metal Battery Based on Lithium Garnet as Electrolyte 250
11.2.2 Fabrication of Symmetric Cells 251
11.2.3 Fabrication of Li Metal Batteries 252
11.2.4 Fabrication of Li–S Battery Based on Li6.4La3Zr1.4Ta0.6O12 (LLZT) Solid Electrolyte 253
11.2.5 Characterization 254
11.2.6 Electrochemical Measurements 254
11.3 Discussion 255
11.3.1 Characterization of LLZA Electrolyte 255
11.3.2 All-Solid-State Lithium Battery Based on Lithium Garnet Electrolyte 255
11.3.3 Electrochemical Evaluation of LLZT Based Lithium–Sulfur Battery 266
11.4 Conclusions 272
References 273
Solid-State Batteries 277
12 Grain Boundary Engineering for High Short-Circuit Tolerance 278
12.1 Introduction 278
12.2 Experimental Section 280
12.2.1 Materials and Preparation of LLZT Pellets 280
12.2.2 Structural Characterization 281
12.2.3 Electrochemical Analysis 282
12.3 Results and Discussion 283
12.3.1 Phase and Morphology Analysis of Solid Electrolytes 283
12.3.2 Ionic Conductivity 289
12.3.3 Charge Transfer Resistance and Short-Circuit Tolerance 292
12.4 Conclusions 294
Appendix I 295
References 296
13 All-Solid-State Batteries Based on Glass-Ceramic Lithium Vanadate 298
13.1 Introduction 299
13.1.1 Why All-Solid-State? 299
13.1.2 Challenges of All-Solid-State Battery Development 300
13.2 Cathode Materials 302
13.3 Vanadate Glass and Glass-Ceramic 304
13.4 Experimental Techniques 311
13.4.1 Preparation Methods 311
13.4.2 Characterization Methods 314
13.4.3 Electrochemical Methods 315
13.4.4 Three-Electrode Cell 318
13.5 All-Solid-State Battery with Vanadate Glass-Ceramic Cathode 321
13.6 Conclusion 324
References 324
14 Fabrication of All-Solid-State Lithium Batteries with an Aerosol Process 336
14.1 Introduction 336
14.2 Experimental 337
14.3 Results and Discussion 339
14.4 Conclusion 345
References 346
15 Li Metal Polymer Batteries 348
15.1 Introduction to Global Challenges and Li-ion Batteries 348
15.2 Introduction to Lithium Polymer Batteries 350
15.3 Promising Candidates as Electrolytes for Solid-State Batteries 352
15.3.1 Materials as Polymer Hosts 352
15.3.2 The Importance of Salt Anions 353
15.3.3 Polyether-Based SPEs 354
15.3.4 Polycarbonates and Polyesters 355
15.3.5 Polysiloxanes 357
15.3.6 Polymer-in-Salt Systems 357
15.3.7 Single-Ion Conductors 358
15.3.8 Use of Additives 359
15.3.9 Li Metal Polymer Solid-State Batteries 361
15.4 Challenges of Li Metal Anodes/Polymer Electrolytes in Solid-State Polymer Batteries 364
15.4.1 Intercalation Host Cathodes 364
15.4.2 Sulfur Cathodes 364
15.4.3 Oxygen Cathodes 365
15.5 Fabrication Process of Li Metal Polymer Battery 366
15.6 Current Status of Li Metal Polymer Batteries for EV Applications 368
15.7 Conclusion and Future Perspectives 369
References 370

Erscheint lt. Verlag 11.12.2019
Zusatzinfo VIII, 373 p. 189 illus., 161 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Maschinenbau
Schlagworte Energy Storage • garnet electrolytes • garnet type solid electrolyte • high energy density batteries • Lithium Battery • lithium garnets • safe batteries • Solid electrolytes • solid state battery
ISBN-10 3-030-31581-9 / 3030315819
ISBN-13 978-3-030-31581-8 / 9783030315818
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 53,65
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 58,55

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
CHF 75,20