Advances in Forming, Machining and Automation (eBook)
XIX, 741 Seiten
Springer Singapore (Verlag)
978-981-329-417-2 (ISBN)
This volume comprises select proceedings of the 7th International and 28th All India Manufacturing Technology, Design and Research conference 2018 (AIMTDR 2018). The papers in this volume focus on forming and machining, and discuss both conventional technologies and the latest developments and innovations, including both experimental studies and simulations; while those on automation present the latest research on hardware as well as software aspects. This volume will be of interest to researchers, and practicing engineers alike.
M.S. Shunmugam is a Professor (Emeritus) in the Manufacturing Engineering Section in the Department of Mechanical Engineering, Indian Institute of Technology (IIT) Madras. After receiving his PhD in Mechanical Engineering from IIT Madras in 1976, he has worked in IIT Bombay (from 1977 to 1980) and in IIT Madras from 1980 onwards. He was a visiting faculty member at Michigan Technological University during 1989-1991 and was a member in the board of governors of IIT Madras during 2012-2013. Dr. Shanmugam's research interests include metrology, machine tools, manufacturing, gears, micro-machining and computer applications in manufacturing. He has published about 130 peer-reviewed international journal papers, 15 peer-reviewed national journal papers, 75 international conferences and about 80 national conferences.
M. Kanthababu is a Professor in the Department of Manufacturing Engineering in Anna University, Chennai, India and the Director of the Centre for Intellectual Property Right and Trade Marks in Anna University. He has completed his MS in Mechanical engineering and PhD in Advanced Manufacturing Technology from IIT Madras. Prof Kanthababu's research interests include manufacturing technology, composite materials and machining, and automation in manufacturing. He has published more than 30 peer reviewed international journal papers and 2 books, and holds one patent.
This volume comprises select proceedings of the 7th International and 28th All India Manufacturing Technology, Design and Research conference 2018 (AIMTDR 2018). The papers in this volume focus on forming and machining, and discuss both conventional technologies and the latest developments and innovations, including both experimental studies and simulations; while those on automation present the latest research on hardware as well as software aspects. This volume will be of interest to researchers, and practicing engineers alike.
AIMTDR 2018 Conference’s Core Organizing Committee 6
Patrons 6
President (NAC-AIMTDR) 6
Vice-President (NAC-AIMTDR) 6
Co-patrons 6
Chairman 7
Co-chairman 7
Organizing Secretary 7
Joint Organizing Secretaries 7
International Scientific Committee 7
National Advisory Committee 8
Foreword 10
Preface 12
Contents 13
About the Editors 19
Forming 20
1 Effect of Heat Treatment on Formability of AA6082 by Single Point Incremental Forming 21
1.1 Introduction 21
1.2 Experimental 24
1.3 Results and Discussions 25
1.3.1 Analysis of Formability of the Un-annealed AA6082 Sheet Metal 25
1.4 Analysis of Formability of the Annealed AA6082 Sheet Metal 28
1.5 Conclusion 32
References 32
2 Forming Behavior of AA5052-H32 and AA6061-T6 During Single Point Incremental Forming 34
2.1 Introduction 34
2.2 Experimental Procedure 35
2.2.1 Blank Material 36
2.2.2 Strain Measurement 37
2.3 Results and Discussion 38
2.3.1 Formability Measured in Terms Forming Strains 38
2.3.2 Formability Measured in Terms Thickness Distribution 41
2.3.3 Formability Measured in Terms of Forming Depth 41
2.4 Conclusions 45
References 45
3 Pull-Out Forming: Experiments and Process Simulation 46
3.1 Introduction 46
3.2 CAE Simulation Procedure 48
3.3 Design of Tubular Pull-Out Process 49
3.3.1 Systematic Pull-Out Process Design and Evaluation 50
3.3.2 Evaluation Criteria for Pull-Out Process Design 51
3.3.3 Design Index 52
3.3.4 System Evaluation Criterion 52
3.4 Implementation and Case Study 53
3.4.1 Discussion and Analysis 57
3.5 Experimental Verification 62
3.6 Conclusions 64
References 68
4 Failure Prediction and Forming Behavior of AA5754 Sheets at Warm Temperature 69
4.1 Introduction 69
4.2 Finite Element Model 70
4.2.1 Hill48 Anisotropy Yield Theory 71
4.2.2 Failure Criteria 74
4.3 Results and Discussion 75
4.3.1 Failure Strains and Evolution of Strain Path 75
4.3.2 Validation with Experimental Results 76
4.4 Conclusions 80
References 80
5 Magnetic Pulse Forming and Punching of Al Tubes—A Novel Technique for Forming and Perforation of Tubes 82
5.1 Introduction 82
5.2 Experimental Methodology 84
5.2.1 Working Principle 84
5.2.2 Experimental Set-up 86
5.3 Results and Discussions 87
5.3.1 Experiment with Pointed Punch 88
5.3.2 Experiments with Concave Punch 89
5.4 Conclusions 90
References 91
6 Experimental Investigation on the Forming of AA 5052-H32 Sheet Using a Rigid-Body-Based Impact in a Shock Tube 93
6.1 Introduction 93
6.2 Experimental Procedure 95
6.2.1 Material Details and Mechanical Properties 95
6.2.2 Shock Tube Experiments 95
6.2.3 Strain Distribution 97
6.3 Results and Discussion 98
6.3.1 Calibration of Shock Tube Pressures 98
6.3.2 Determination of the Striker Velocity 98
6.3.3 Free Forming Experiments 100
6.3.4 Strain Distribution Analysis 101
6.3.5 Formability Limits 102
6.4 Conclusions 103
References 103
7 An Experimental Study on Single-Point Incremental Forming of AA5083 Sheet Using Response Surface Methodology 105
7.1 Introduction 105
7.2 Experimental Setup and Procedure 107
7.3 Response Surface Modeling and Optimization 108
7.4 Results and Discussion 112
7.5 Conclusions 116
References 116
8 Study and Establishment of Manufacturing Process of Molybdenum Liners Using Warm Flow Forming Process 118
8.1 Introduction 118
8.2 Molybdenum as Liner Material 119
8.3 Characteristics of Molybdenum Material 119
8.4 Manufacturing of Molybdenum Liner 120
8.4.1 Manufacturing Processes for Liner 120
8.4.2 Intricacies in Liner Manufacturing by Flow Forming 120
8.4.3 Warm Flow Forming of Molybdenum Liner 120
8.5 Experimental Setup 121
8.5.1 Salient Features of the Component 121
8.5.2 Machine 121
8.5.3 Tooling Used 122
8.6 Experimental Process 124
8.6.1 Preparation of Blank 124
8.6.2 Pre-Form Design 124
8.6.3 Flow Forming Operation 125
8.6.4 Final Finishing Operations 126
8.7 Analysis and Observation 126
8.7.1 Dimensional and Metallurgical Analysis 127
8.8 Conclusions 128
References 129
Machining 130
9 Influence of Surgical Drill Geometry on Drilling Performance of Cortical and Trabecular Bone 131
9.1 Introduction 131
9.2 Experimental Set-up 133
9.3 Results and Discussion 134
9.3.1 Axial Forces 134
9.3.2 Drilling Temperature 139
9.3.3 Surface Quality 141
9.4 Conclusions 142
References 143
10 Study of Cutting Temperature and Chip Formation in Drilling of AA6351–B4C Composite 144
10.1 Introduction 144
10.2 Materials and Methods 145
10.2.1 Material Preparation and Properties 145
10.2.2 Experimental Procedure 146
10.3 Results and Discussion 148
10.4 Conclusions 150
References 152
11 A Study of Parameters Affecting Cutting Forces in Minimum Quantity Lubrication-Assisted Cross-Peripheral Grinding of Alumina Ceramic 153
11.1 Introduction 153
11.2 MQL-Assisted CPG 156
11.2.1 MQL System 156
11.2.2 Identification of Process Parameters 157
11.3 Experimental Setup and Procedure 158
11.3.1 Experimental Setup 158
11.3.2 Design of Experiments 158
11.4 Results and Discussion 159
11.4.1 ANOVA for Cutting Force 159
11.4.2 Main Effects Plot 160
11.4.3 Tool Surface Morphology 160
11.5 Conclusions 161
References 162
12 Condition Monitoring of Abrasive Waterjet Milling Using Acoustic Emission and Cutting Force Signals 163
12.1 Introduction 163
12.2 Literature Review 164
12.3 Experimental Set-up 165
12.4 Results and Discussion 167
12.4.1 Influence of Waterjet Pressure 167
12.4.2 Influence of Traverse Rate 168
12.4.3 Influence of Abrasive Flow Rate 168
12.4.4 Influence of Standoff Distance (SOD) 169
12.4.5 Analysis of AE Signal 170
12.4.6 Analysis of Cutting Force Signal 171
12.5 Conclusions 173
References 173
13 A Novel Small Quantity Lubrication Method to Assess Grindability of Inconel 718 175
13.1 Introduction 175
13.2 Experimental Procedure 176
13.3 Results and Discussion 178
13.4 Conclusions 184
References 185
14 Performance of Carbon Nanotubes Based Cutting Oil on Turning of AISI 1040 Steel 187
14.1 Introduction 188
14.2 Experimentation 190
14.2.1 Preparation of Nanofluids 190
14.2.2 Machining Tests 190
14.3 Results and Discussions 191
14.3.1 Dispersion Stability of Nanofluids 191
14.3.2 Machining Performance 191
14.4 Conclusions 197
References 198
15 Investigations on the Influence of Serration Parameters on Cutting Forces 199
15.1 Introduction 199
15.2 Geometric Model of Serrated Cutter 201
15.2.1 Modelling of Serration Profile 201
15.2.2 Variation of Tool Geometry 203
15.2.3 Regenerative Multiple Delays Between the Serrated Flutes 204
15.2.4 Local Chip Thickness 205
15.3 Force Model for Serrated Cutter 206
15.4 Experimental Validation of Cutting Forces 208
15.5 Sensitivity of Cutting Forces to Changes in Serration Parameters 210
15.5.1 Influence of a Change in Serration Amplitude 210
15.5.2 Influence of a Change in Serration Wavelength 211
15.5.3 Influence of a Change in Serration Phase Shift 212
15.6 Conclusions 213
References 214
16 Effect of Minimum Quantity Lubrication on Tool Wear and Surface Integrity During Hard Turning of EN31 Steel 215
16.1 Introduction 215
16.2 Experimentation Details 218
16.3 Results and Discussions 219
16.3.1 Effect of MQL on Surface Finish 219
16.3.2 Effect of MQL on Tool Flank Wear 221
16.3.3 Effect of MQL on Microhardness Variation 225
16.4 Conclusions 226
References 228
17 Temperature Profiling of Microwave–Metal Discharge Plasma Channel Using Image Processing Technique 229
17.1 Introduction 230
17.2 Experimental Setup and Image Acquisition 231
17.3 Image Processing and Discussion 232
17.4 Conclusions 235
References 235
18 Applicability of CaF2 Solid Lubricant-Assisted Minimum Quantity Lubrication in Turning for Sustainable Manufacturing 238
18.1 Introduction and Literature Review 238
18.2 Experimental Details 240
18.2.1 Measurements 241
18.3 Results and Discussion 242
18.3.1 Flank Wear Analysis 242
18.3.2 Analysis of Chip-Tool Interface Temperature 244
18.3.3 Analysis of Surface Roughness 244
18.3.4 Effects of Different Lubricant Flow Rates on Surface Roughness 245
18.4 Conclusion 246
References 247
19 Cryogenic Machining of AZ31B Magnesium Alloy for Bio-implant Applications 248
19.1 Introduction 248
19.2 Experimental Set-up 250
19.3 Results and Discussion 253
19.3.1 Cutting Force and Thrust Force 253
19.3.2 Surface Roughness 254
19.3.3 Temperature 255
19.3.4 Microstructure 256
19.3.5 Chip Morphology 256
19.4 Conclusion 258
References 258
20 Experimental Investigation on Machining Parameters of Hastelloy C276 Under Different Cryogenic Environment 261
20.1 Introduction 261
20.2 Experimentation 262
20.2.1 Work Material and Tool 262
20.2.2 Experimental Details 264
20.2.3 Design of Experiments 264
20.3 Results and Discussion 266
20.3.1 Surface Roughness 266
20.3.2 Optimum Machining Parameters 271
20.3.3 Analysis of Variance for Ra 271
20.4 Conclusions 273
References 274
21 Machining of EN-31 Steel and Experimental Analysis of Various Process Parameters Using Minimum Quantity Lubrication 276
21.1 Introduction 276
21.1.1 Tool Wear 277
21.1.2 Selection of Cutting Tool 277
21.1.3 Minimum Quantity Lubrication 278
21.2 Literature Review 279
21.3 Experimental Procedure 279
21.3.1 Hard Turning with MQL 279
21.3.2 Surface Integrity Test 279
21.3.3 Tool Wear Measurement 280
21.3.4 Design of Experiment 280
21.4 Results and Discussion 281
21.4.1 Effect of Various Parameters on Surface Roughness 282
21.4.2 Effect of Various Parameters on Tool Wear 285
21.5 Conclusions 287
References 288
22 Effect of Tool Material on Trepanning of CFRP Composites 290
22.1 Introduction 291
22.2 Experimental Design 292
22.3 Experimental Procedure 293
22.4 Result and Discussion 295
22.4.1 Analysis of Fiber Pull Out 295
22.4.2 Analysis of Thrust Force and Torque on Tool Material 296
22.4.3 Effect of Delamination Factor 297
22.4.4 Effect of AE RMS 299
22.5 Conclusions 299
References 300
23 Effect of Air Delivery Pressure and Flow Rate on Surface Integrity in Minimum Quantity Cooling Lubrication Grinding of Inconel 718 302
23.1 Introduction 302
23.2 Experimental Details 304
23.3 Results and Discussion 305
23.3.1 Ground Surface Morphology 305
23.3.2 Surface Residual Stress 306
23.4 Conclusions 310
References 310
24 Effect of Different Geometric Texture Shapes on Wettability and Machining Performance Evaluation Under Dry and MQL Environments 312
24.1 Introduction 312
24.2 Experimental Details 313
24.3 Results and Discussion 315
24.3.1 Variation in Static Contact Angle for Different Fluids on Textured WC/Co 315
24.3.2 Main Cutting Forces from Machining Tests 317
24.3.3 Thrust Forces 318
24.3.4 Analysis of Rake Surface for Plain and Textured Tools 318
24.4 Conclusions 320
References 321
25 Evaluation of Surface Morphology of Yttria-Stabilized Zirconia with the Progress of Wheel Wear in High-Speed Grinding 322
25.1 Introduction 322
25.2 Materials and Methods 324
25.3 Results and Discussion 325
25.4 Conclusions 329
References 330
26 Grindability and Surface Integrity of Nickel-Based Cast Superalloy IN-738 by Vitrified Alumina Wheel 331
26.1 Introduction 331
26.2 Experimental Setup 334
26.2.1 Work Material 334
26.2.2 Machine Tool 334
26.2.3 Grinding Wheel 334
26.2.4 Cutting Environment 334
26.2.5 Dynamometry 336
26.3 Experimentation 337
26.4 Results and Discussion 337
26.4.1 Grinding Swarf 337
26.4.2 Grindability 338
26.4.3 Surface Integrity Aspects 340
26.5 Conclusions 342
References 342
27 Simulating the Effect of Microstructure in Metal Sliding and Cutting 344
27.1 Introduction 344
27.2 Procedure 345
27.2.1 Procedure Overview for Metal Sliding Regime 346
27.2.2 Procedure Overview for Metal Cutting Regime 347
27.3 Results and Discussion—Metal Sliding Regime 347
27.3.1 Interaction of a Wedge with a Homogeneous Specimen 347
27.3.2 Folding with a Soft Grain 347
27.3.3 Folding with a Harder Grain 348
27.3.4 Implications of the Minimal Model 349
27.3.5 Other Types of Inhomogeneities 349
27.4 Results and Discussion—Metal Cutting Regime 349
27.4.1 Sinuous Flow Development 349
27.4.2 Grain Deformation in Sinuous Flow 350
27.4.3 Type-I Chips and Sinuous Flow 351
27.4.4 Implications of Pseudograin Model in Metal Cutting 351
27.5 Conclusion 351
References 352
28 What Do Chip Morphologies Tell Us About the Cutting Process? 353
28.1 Introduction 354
28.2 Experimental Configuration 355
28.3 Results 356
28.3.1 Type 2 (Laminar Flow) 356
28.3.2 Type 1 (Sinuous Flow) 356
28.3.3 Type 3 (Segmented Flow) 358
28.3.4 Type 4 (Shear Banding) 359
28.3.5 Transitions Between Flow Modes 361
28.4 Implications and Conclusions 362
References 363
29 Simultaneous Optimization of Milling Process Responses for Nano-Finishing of AISI-4340 Steel Through Sustainable Production 364
29.1 Introduction 364
29.2 Materials and Methods 366
29.3 Results and Discussion 368
29.3.1 Graphical Analysis 368
29.3.2 Optimization 370
29.4 Conclusions 376
References 377
30 Assessment of Cutting Tool Reliability During Turning Considering Effects of Cutting Parameters and Machining Time 378
30.1 Introduction 379
30.2 Reliability Model 380
30.3 Experimental Details 381
30.3.1 Experimental Procedure 381
30.4 Results and Discussion 382
30.5 Conclusions 384
References 387
31 An Experimental Investigation on Productivity and Product Quality During Thin-Wall Machining of Aluminum Alloy 2024-T351 388
31.1 Introduction 388
31.2 Experimental Details 389
31.3 Results and Discussion 391
31.3.1 Milling Force 391
31.3.2 Surface Roughness 391
31.3.3 Dimensional Accuracy 393
31.4 Conclusions 393
References 395
32 An Approach of Minimizing Energy Consumption in the Machining System Using Job Sequences Varying Technique 397
32.1 Introduction 397
32.2 Problem Statement 398
32.3 Procedure and Methodology 398
32.3.1 Determine the Value of Total Energy Consumption 400
32.3.2 Computation of TEC of Corresponding Parts 403
32.3.3 Computation of TEC Using a Rule-Based System 405
32.4 Results and Discussion 406
32.5 Conclusion 406
References 407
33 Comparative Study on the Performance of Different Drill Bits for Drilling CFRP 408
33.1 Introduction 408
33.2 Fabrication of CFRP 410
33.3 Experimental Setup and Methodology 410
33.4 Results and Discussion 411
33.4.1 Drilling Tests with Solid Carbide Drill 414
33.4.2 Drilling Tests with Diamond Core Drill 415
33.4.3 Drilling Tests with Brad Point Bit 416
33.4.4 Study of Thrust Force During Drilling 417
33.5 Conclusions 418
References 419
34 A Cyber-Physical System Improves the Quality of Machining in CNC Milling Machine—A Case Study 421
34.1 Introduction 421
34.2 Development of Cyber-Physical System 423
34.2.1 Physical Layer 424
34.2.2 Network Layer 425
34.2.3 Storage Layer 426
34.2.4 Processing and Analytic Layer 426
34.2.5 Application Layer 426
34.3 Experimental Setup 426
34.4 Results and Discussion 428
34.5 Conclusions 428
References 429
35 Challenges in Machining of Silica–Silica Cone for Aerospace Application 430
35.1 Introduction 430
35.2 Development of Special Fixtures 432
35.2.1 Sequence of Operations 434
35.2.2 Prior Inspection of Raw Material 434
35.2.3 Facing of Top and Bottom Faces 435
35.2.4 Turning External Profile 436
35.2.5 Turning Internal Profile and Finish Facing 437
35.2.6 Final Inspection 438
35.3 Results 438
35.4 Conclusions 439
References 439
36 Optimization of Cutting Parameters for Hard Turning of WC–Co–Ni–Cr (15% Binder) Mill Rolls on CNC Lathe with Polycrystalline Diamond 440
36.1 Introduction 440
36.2 Experiments 442
36.3 Results and Discussion 444
36.3.1 Results of Multimodal Grade 444
36.3.2 Tool Wear 446
36.4 Conclusions 447
Essential Questions 447
References 448
37 Multi-response Optimization of End Milling on Al6061–Sicp Metal Matrix Composite–Hybrid GRA-PCA Approach 449
37.1 Introduction 449
37.2 Experimental Work 450
37.3 Methodology Adopted 452
37.3.1 Hybrid GRA-PCA 452
37.4 Results and Discussion 452
37.5 Conclusions 455
References 456
38 Experimental Investigation on Dewaxed Tungsten Carbide-Based Self-lubricant Cutting Tool Material 458
38.1 Introduction 458
38.2 Experimental Procedure 459
38.2.1 Materials and Methods 459
38.3 Result and Discussion 461
38.3.1 SEM Analysis on Morphology of Milled Particles After Dewaxing 461
38.3.2 XRD Analysis on Powder Crystallinity 461
38.3.3 TEM Analysis on Shape and Distribution 463
38.4 Conclusions 465
References 465
39 An Experimental Investigation on Horizontal Surface Grinding of Mild Steel Using Different Lubricating Oils 467
39.1 Introduction 467
39.2 Experimental Setup and Conditions 468
39.2.1 Workpiece Material 469
39.2.2 Experimental Setup 469
39.2.3 Experimental Procedure 471
39.3 Results and Discussion 472
39.3.1 Experimental Results 472
39.3.2 ANOVA Analysis 473
39.4 Conclusion 475
References 476
40 Comparison Between Advanced Cutting Tools to Achieve a Better Cutting Condition for the Machining of Aluminium 477
40.1 Introduction and Literature Review 477
40.2 Material and Method 479
40.2.1 Material 479
40.2.2 Method 480
40.2.3 Cutting Conditions 480
40.2.4 Characterization of the Tools 480
40.2.5 Surface Roughness 481
40.3 Results and Discussion 481
40.3.1 SEM 483
40.3.2 Study of Tool Wear by EDS Analysis 483
40.4 Experimental Investigation 484
40.4.1 Roughness Analysis 485
40.5 Conclusion 489
References 489
41 Investigation on Machining Responses during Hard Turning of AISI D2 Steel under Dry, Wet and Nano-based MQL Conditions 491
41.1 Introduction 492
41.2 Experimental Details 492
41.2.1 Workpiece Material 492
41.2.2 Cutting Tool and Cutting Conditions 494
41.2.3 Machine Tool 494
41.2.4 MQL Set-up 494
41.2.5 Measuring Equipment Used 494
41.3 Result and Discussion 495
41.3.1 Machining Forces 495
41.3.2 Surface Roughness 496
41.3.3 Tool Wear Mechanism 497
41.4 Conclusions 499
References 499
42 Effect of Machining Parameters on Surface Integrity in End Milling of Inconel 625 501
42.1 Introduction 502
42.2 Experimental Details 504
42.3 Result and Analysis 505
42.3.1 Analysis of Surface Roughness Using ANOVA 505
42.3.2 Analysis of Micro-hardness 507
42.3.3 Analysis of Residual Stresses 508
42.4 Conclusion 509
References 510
43 Tool Wear Behavior in Milling of Hardened Custom 465 Steel 512
43.1 Introduction 512
43.2 Experimental Setup 514
43.2.1 Substrate, Coatings, and Characterization 514
43.2.2 Workpiece Material 514
43.2.3 Cutters and Machine Tool 515
43.2.4 Experimental Procedure 515
43.3 Results and Discussions 516
43.3.1 Coating Characterization 516
43.3.2 Tool Wear and Wear Mechanism 516
43.3.3 Chip Morphology 518
43.4 Conclusions 519
References 520
44 Experimental Study on Machining of EN24 Using Minimum Quantity Lubrication 521
44.1 Introduction 521
44.2 Experimental Details 523
44.2.1 Selection of Material 523
44.2.2 Selection of Cutting Tool 523
44.2.3 Design of Experiments 523
44.2.4 Working Conditions and Experimental Setup 524
44.2.5 Hard Turning with MQL 525
44.2.6 Surface Integrity Test 525
44.3 Results and Discussion 526
44.3.1 Surface Roughness 526
44.3.2 Tool Wear 529
44.4 Conclusions 531
References 531
45 Investigative Study of Temperature Produced During Turning Operation Using MQL and Solid Lubricants 533
45.1 Introduction 533
45.2 Literature Review 534
45.3 Experimental Details 535
45.4 Results 538
45.4.1 Numerical Analysis 541
45.5 Conclusions 543
References 543
46 Effect of Dressing Infeed on Alumina Wheel During Grinding Ti–6Al–4V Under Varying Depth of Cut 544
46.1 Introduction 544
46.2 Materials and Methods 546
46.3 Results and Discussion 546
46.4 Conclusions 550
References 552
47 Experimental Evaluation of Surface Roughness, Dimensional Accuracy, and MRR in Cylindrical Grinding of EN 24 Steel 554
47.1 Introduction 554
47.2 Experimental Details 555
47.2.1 Workpiece, Grinding Wheel, and Machine 555
47.2.2 Selection of Input Parameters 555
47.3 Experimental Procedure 557
47.4 Results and Discussion 558
47.4.1 Analysis of PRSR 558
47.4.2 Analysis of Material Removal Rate 560
47.4.3 Analysis of Dimensional Deviation 560
47.5 Conclusions 561
References 562
Automation 563
48 Bio-inspired Knowledge Representation Framework for Decision Making in Product Design 564
48.1 Introduction 564
48.2 Related Work 566
48.3 Methodology 567
48.3.1 UPGMA Algorithm for Knowledge Representation in Product Design 568
48.3.2 Neighbor Joining Algorithm 569
48.4 Design Case Study 570
48.4.1 Phylogenetic Tree Creation for Power Drill by UPGMA Algorithm 572
48.5 Advantages of Proposed Framework 575
48.6 Conclusions 575
References 576
49 Heuristic Algorithmic Approach for Automatic Generation of Pin Layout for Robotic Unloading of Sheet Metal Parts 577
49.1 Introduction 577
49.2 Approach 579
49.3 Heuristic Algorithm 582
49.4 Results and Discussion 585
49.5 Conclusions 590
References 590
50 Voxel-Based Strategy for Efficient CNC Machining 591
50.1 Introduction 591
50.2 Methodology 593
50.3 Voxelization 593
50.4 Pre-processing 594
50.4.1 Offsetting 594
50.4.2 Voxel Projection 595
50.5 Tool Path Generation 596
50.5.1 Tool path with Lift 596
50.5.2 Tool Path with Minimal Lift 597
50.6 Post-processing 598
50.7 Results and Discussion 598
50.7.1 Case Study 1 598
50.7.2 Case Study 2 599
50.8 Conclusions 601
References 602
51 Effect of Geometrical and Process Parameters on Utilization of Sheet Material in Plasma and Laser Cutting Processes 603
51.1 Introduction 603
51.2 Process Parameters 604
51.3 Evaluation of Nested Patterns 607
51.4 Results and Discussion 609
51.5 Conclusions 613
References 614
52 Development of Manufacturability Indices for Prismatic Parts 615
52.1 Introduction 615
52.2 Related Work 616
52.3 Manufacturability Evaluation 616
52.3.1 Geometrical Complexity Parameters 617
52.3.2 Technological Complexity Parameters 620
52.3.3 Determination of Manufacturability Indices (TCI and GCI) 621
52.3.4 Determination of Weights for Geometrical and Technological Parameters 622
52.4 Illustrative Example 622
52.5 Conclusions 625
References 625
53 A Cyber-Physical System Architecture for Smart Manufacturing 626
53.1 Introduction 627
53.2 Proposed CPS Architecture for Smart Manufacturing 629
53.2.1 Data Acquisition and Processing 629
53.2.2 Cloud Network 630
53.3 Implementation of CPS Architecture 631
53.3.1 Ball End Magnetorheological Finishing Process 631
53.3.2 Description of i5-B CNC BEMRF Machine Tool 631
53.3.3 Configuring CPS on i5-B CNC BEMRF Machine Tool 632
53.3.4 Example of EDGE Processing on i5-B CNC BEMRF Machine Tool 633
53.4 Conclusions 635
References 636
54 Measurement of Bores Using Scanning Mode of Articulated Arm Coordinate Measuring Machines 637
54.1 Introduction 637
54.2 Experimental Methodology 639
54.2.1 Workpiece 639
54.2.2 Procedure 639
54.3 Results and Discussion 641
54.3.1 Measurement Times 641
54.3.2 Determination of Precision 641
54.3.3 Comparison of Methods 643
54.3.4 Cylindricity 643
54.4 Conclusions 645
References 645
55 A Method for Evaluation of Simple Torus Surfaces 647
55.1 Introduction 647
55.2 Problem Definition 648
55.3 Mathematical Evaluation 649
55.3.1 Equation of Torus in Cartesian Coordinates 649
55.3.2 Equation of Torus in Parametric Form 649
55.3.3 Evaluation of Torus Parameters R and r 651
55.4 Practical Application 654
55.5 Results and Discussion 656
55.6 Conclusions 656
References 656
56 An Artefact-Based Continues Performance Verification of Coordinate Measuring Machine 658
56.1 Introduction 658
56.2 Theory of CMM Uncertainty 660
56.2.1 Uncertainty Factor of the CMM 660
56.3 Experimental Work Done 662
56.3.1 New Design Aluminium Alloy (Al6061) Artefact 663
56.4 Conclusions 665
References 665
57 Development of Welding Fixture for Rocket Motor Casing Assembly 666
57.1 Introduction 666
57.2 Design of Fixtures 667
57.2.1 Welding Fixture for Assembly of Flanges to Motor Case 667
57.3 Major Components and Manufacturing Criticalities of Fixture 670
57.4 Calculation and Analysis 672
57.5 Result and Conclusions 674
References 675
58 Generation of Sequence of Machining Operations Through Visualization of End Product 676
58.1 Introduction 676
58.2 Methodology 677
58.3 Case Study: Connecting Rod 678
58.3.1 Stage-1: Geometric CAD Model 678
58.3.2 Stage 2: Spatial Orientation 679
58.3.3 Stage 3: Rooted Tree Graph 680
58.3.4 Stage 4: Cluster Diagram 681
58.4 Conclusions 684
References 685
59 Monitoring the Dynamics and Tracking of a Vehicle Using Internet of Things (IoT) 686
59.1 Introduction 687
59.2 Experimental Methodology 688
59.2.1 Monitoring the Dynamics of a Vehicle Using IoT 688
59.2.2 Tracking of a Vehicle Using IoT 689
59.2.3 BLYNK Application 689
59.3 Results and Discussions 690
59.3.1 Stress-Strain Analysis Using Load Cell 690
59.3.2 Vehicle Tracking Using GPS 691
59.4 Conclusions 692
References 693
60 Automated Production of Medical Screws Using Titanium Bar on Indigenous Sliding Headstock Automat 695
60.1 Introduction 695
60.1.1 Structure of Medical Screw 696
60.1.2 Process of Producing Medical Screw 697
60.2 Methodology 697
60.2.1 Concept 1: Single-Point Form Threading Tool Concept 697
60.2.2 Concept 2: Thread Whirling Concept 698
60.3 Experimental Set-up 699
60.3.1 Machine Tool Set-up 699
60.3.2 Input Material Used 700
60.3.3 Test Component Details 700
60.3.4 Case 1: Using Single-Point Form Threading Tool 700
60.3.5 Case 2: Using Thread Whirling Attachment 703
60.4 Results 703
60.4.1 Using Form Thread Cutting Tool 704
60.4.2 Comparison Between Single-Point Cutting Tool and Thread Whirling Attachment 706
60.5 Conclusion 707
References 707
61 Process Mechanization and Automation for Hybrid TIG MAG Arc Welding 708
61.1 Introduction 708
61.2 Process Development 709
61.2.1 Process Controlling Parameters 710
61.2.2 Process Mechanization 710
61.2.3 Process Automation 712
61.3 Conclusions 714
References 716
62 Two-Sided Assembly Line Balancing—A Company Case Study Solved by Exact Solution Approach 717
62.1 Introduction 717
62.2 TALBP Problem Description 718
62.3 Mathematical Programming Model of TALBP 719
62.4 Case Study Problem and Results 722
62.5 Conclusion and Future Research 724
References 724
Erscheint lt. Verlag | 23.11.2019 |
---|---|
Reihe/Serie | Lecture Notes on Multidisciplinary Industrial Engineering | Lecture Notes on Multidisciplinary Industrial Engineering |
Zusatzinfo | XIX, 741 p. 458 illus., 361 illus. in color. |
Sprache | englisch |
Themenwelt | Technik ► Maschinenbau |
Wirtschaft ► Betriebswirtschaft / Management ► Logistik / Produktion | |
Schlagworte | Advanced Machining Technology • conventional machining • Forming Behavior • Machining • Manufacturing Automation • material processing • Metal forming • Process Simulation • Product Design & Development • sustainable manufacturing |
ISBN-10 | 981-329-417-5 / 9813294175 |
ISBN-13 | 978-981-329-417-2 / 9789813294172 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 23,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich