Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Centrifugal Pumps (eBook)

eBook Download: PDF
2019 | 4th ed. 2020
XLVIII, 1264 Seiten
Springer International Publishing (Verlag)
978-3-030-14788-4 (ISBN)

Lese- und Medienproben

Centrifugal Pumps - Johann Friedrich Gülich
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This handbook summarizes the research results on hydraulic problems in centrifugal pump design and describes the state of the art in a comprehensive way. For this 4th edition, current research results of practical relevance were included. The selection and presentation of the material was oriented towards the needs of pump manufacturers, system planners and pump operators. Much space is devoted to understanding the physical relationships as essential knowledge for correct application. The latter is supported by more than 160 diagrams and tables for calculation and problem diagnosis .

The book has been extensively updated. New additions:

- A separate chapter on 'Vibrations on vertical pumps'.

- Measurements of hydraulic exciter and impeller reaction forces

- Alternating stresses and fatigue fractures of impellers

- a critical study on the accuracy of numerical flow calculations of pumps

- Design of inlet housings and double spirals for multistage pumps.

Preface 5
Supplements to the 4th Edition 7
Acknowledgements 9
Symbols, Abbreviations, Definitions 11
Subscripts, Superscripts and Abbreviations 19
The following are superscripts 21
Contents 27
List of Tables 40
List of Data Tables 45
1 Fluid Dynamic Principles 47
1.1 Flow in the Absolute and Relative Reference Frame 47
1.2 Conservation Equations 48
1.2.1 Conservation of Mass 48
1.2.2 Conservation of Energy 49
1.2.3 Conservation of Momentum 51
1.3 Boundary Layers, Boundary Layer Control 53
1.4 Flow on Curved Streamlines 57
1.4.1 Equilibrium of Forces 57
1.4.2 Forced and Free Vortices 61
1.4.3 Flow in Curved Channels 63
1.5 Pressure Losses 64
1.5.1 Friction Losses (Skin Friction) 65
1.5.2 Influence of Roughness on Friction Losses 67
1.5.3 Losses Due to Vortex Dissipation (Form Drag) 71
1.6 Diffusers 73
1.7 Submerged Jets 80
1.8 Equalization of Non-uniform Velocity Profiles 82
1.9 Flow Distribution in Parallel Channels, Piping Networks 84
References 88
2 Pump Types and Performance Data 90
2.1 Basic Principles and Components 90
2.2 Performance Data 94
2.2.1 Specific Work, Head 95
2.2.2 Net Positive Suction Head, NPSH 96
2.2.3 Power and Efficiency 96
2.2.4 Pump Characteristics 98
2.3 Pump Types and Their Applications 99
2.3.1 Overview 99
2.3.2 Classification of Pumps and Applications 102
2.3.3 Pump Types 102
2.3.4 Special Pump Types 120
References 125
3 Pump Hydraulics and Physical Concepts 126
3.1 One-Dimensional Calculation with Velocity Triangles 126
3.2 Energy Transfer in the Impeller, Specific Work and Head 130
3.3 Flow Deflection Caused by the Blades. Slip Factor 132
3.4 Dimensionless Coefficients, Similarity Laws and Specific Speed 137
3.5 Power Balance and Efficiencies 140
3.6 Calculation of Secondary Losses 143
3.6.1 Disk Friction Losses 143
3.6.2 Leakage Losses Through Annular Seals 147
3.6.3 Power Loss Caused by the Inter-stage Seal 158
3.6.4 Leakage Loss of Radial or Diagonal Seals 159
3.6.5 Leakage Losses in Open Impellers 160
3.6.6 Mechanical Losses 161
3.7 Basic Hydraulic Calculations of Collectors 162
3.8 Hydraulic Losses 168
3.9 Statistical Data of Pressure Coefficients, Efficiencies and Losses 175
3.10 Influence of Roughness and Reynolds Number 185
3.10.1 Overview 185
3.10.2 Efficiency Scaling 186
3.10.3 Calculation of the Efficiency from Loss Analysis 188
3.11 Minimization of Losses 194
3.12 Compendium of Equations for Hydraulic Calculations 195
References 211
4 Performance Characteristics 213
4.1 Head-Capacity Characteristic and Power Consumption 214
4.1.1 Theoretical Head Curve (Without Losses) 214
4.1.2 Real Characteristics with Losses 216
4.1.3 Component Characteristics 219
4.1.4 Head and Power at Operation Against Closed Discharge Valve 227
4.1.5 Influence of Pump Size and Speed 230
4.1.6 Influence of Specific Speed on the Shape of the Characteristics 231
4.2 Best Efficiency Point 232
4.3 Prediction of Pump Characteristics 237
4.4 Range Charts 238
4.5 Modification of the Pump Characteristics 240
4.5.1 Impeller Trimming 241
4.5.2 Under-Filing and Over-Filing of the Blades at the Trailing Edge 251
4.5.3 Collector Modifications 252
4.6 Analysis of Performance Deviations 253
4.7 Calculation of Modifications of the Pump Characteristics 256
References 261
5 Partload Operation, Impact of 3-D Flow Phenomena Performance 262
5.1 Basic Considerations 262
5.2 The Flow Through the Impeller 266
5.2.1 Overview 266
5.2.2 Physical Mechanisms 268
5.2.2.1 The Effect of the Impeller Rotation 268
5.2.2.2 The Effect of Blade Forces 271
5.2.2.3 The Effect of Axial Flow 272
5.2.2.4 The Effect of Meridional Curvature 272
5.2.3 The Combined Effect of Different Mechanisms 274
5.2.4 Recirculation at the Impeller Inlet 276
5.2.5 Flow at the Impeller Outlet 282
5.2.6 Experimental Detection of the Onset of Recirculation 284
5.3 The Flow in the Collector 287
5.3.1 Flow Separation in the Diffuser 287
5.3.2 Pressure Recovery in the Diffuser 289
5.3.3 Influence of Approach Flow on Pressure Recovery and Stall 291
5.3.4 Flow in the Volute Casing 293
5.3.5 Flow in Annular Casings and Vaneless Diffusers 294
5.4 The Effects of Flow Recirculation 295
5.4.1 Effects of Flow Recirculation at the Impeller Inlet 295
5.4.2 Effect of Flow Recirculation at the Impeller Outlet 300
5.4.3 Effect of Outlet Recirculation on the Flow in the Impeller Sidewall Gaps and on Axial Thrust 307
5.4.4 Damaging Effects of Partload Recirculation 310
5.5 Influence of Flow Separation and Recirculation on the Q-H-Curve 311
5.5.1 Types of Q-H-Curve Instability 311
5.5.2 Saddle-Type Instabilities 312
5.5.3 Type F Instabilities 320
5.6 Means to Influence the Shape of the Q-H-Curve 321
5.6.1 Introduction 321
5.6.2 Influencing the Onset of Recirculation at the Impeller Inlet 322
5.6.3 Influencing the Onset of Recirculation at the Impeller Outlet 322
5.6.4 Eliminating a Type F Instability 325
5.6.5 Influencing the Saddle-Type Instability of Radial Impellers with nq  lessthan  50 326
5.6.6 Influencing the Saddle-Type Instability of Radial Impellers with nq  greaterthan  50 329
5.6.7 Influencing the Instability of Semi-axial and Axial Impellers 329
5.6.8 Reduction of Head and Power at Shut-off 332
5.7 Flow Phenomena in Open Axial Impellers 333
5.8 Flow Instabilities in Double-Entry Impellers and Double Volutes 341
5.9 Concluding Remarks 344
References 345
6 Suction Capability and Cavitation 349
6.1 Cavitation Physics 349
6.1.1 Growth and Implosion of Vapor Bubbles in a Flowing Liquid 349
6.1.2 Bubble Dynamics 352
6.2 Cavitation in Impeller or Diffuser 355
6.2.1 Pressure Distribution and Cavity Length 355
6.2.2 Required NPSH, Extent of Cavitation, Cavitation Criteria 357
6.2.3 Scaling Laws for Cavitating Flows 358
6.2.4 The Suction Specific Speed 362
6.2.5 Experimental Determination of the Required NPSHR 365
6.2.6 Cavitation in Annular Seals 375
6.3 Determination of the Required NPSH 375
6.3.1 Parameters Influencing NPSHR 375
6.3.2 Calculation of the NPSHR 379
6.3.3 Estimation of the NPSH3 as Function of the Flow Rate 383
6.4 Influence of the Fluid Properties 387
6.4.1 Thermodynamic Effects 387
6.4.2 Non-condensable Gases 390
6.4.3 Nuclei Content and Tensile Stresses in the Liquid 391
6.5 Cavitation-Induced Noise and Vibrations 393
6.5.1 Excitation Mechanisms 393
6.5.2 Cavitation Noise Measurements for Quantifying the Hydrodynamic Cavitation Intensity 394
6.5.3 Frequency Characteristics of Cavitation Noise 398
6.6 Cavitation Erosion 399
6.6.1 Testing Methods 400
6.6.2 Cavitation Resistance 402
6.6.3 Prediction of Cavitation Damage Based on Cavity Length 405
6.6.4 Prediction of Cavitation Damage Based on Cavitation Noise 410
6.6.5 Solid-Borne Noise Measurements for Cavitation Diagnosis 412
6.6.6 Paint Erosion Tests to Determine the Location of Bubble Implosion 413
6.6.7 Onset of Erosion and Behavior of Material Subject to Different Hydrodynamic Cavitation Intensities 414
6.6.8 Summarizing Assessment 418
6.7 Selection of the Inlet Pressure in a Plant 420
6.8 Cavitation Damage: Analysis and Remedies 423
6.8.1 Record Damage and Operation Parameters 423
6.8.2 Forms of Cavitation and Typical Cavitation Damage Patterns 424
6.8.2.1 Cavitation Damage at the Impeller Inlet 424
6.8.2.2 Cavitation Damage at Impeller Outlet or in the Inlet Casing 428
6.8.2.3 Cavitation Damage in Diffusers or Volutes 431
6.8.3 Reduction or Elimination of Cavitation Damage 435
6.9 Insufficient Suction Capacity: Analysis and Remedies 438
References 439
7 Design of the Hydraulic Components 442
7.1 Methods and Boundary Conditions 442
7.1.1 Methods for the Development of Hydraulic Components 442
7.1.2 The Hydraulic Specification 444
7.1.3 Calculation Models 445
7.2 Radial Impellers 447
7.2.1 Determination of Main Dimensions 447
7.2.2 Impeller Design 457
7.2.2.1 Design of the Meridional Section 457
7.2.2.2 Blade Design 459
7.2.3 Criteria for Shaping the Blades 463
7.2.4 Criteria for Suction Impeller Design 465
7.2.5 Exploiting Three-Dimensional Effects in Design 470
7.3 Radial Impellers for Small Specific Speeds 470
7.3.1 Two-Dimensional Blades 470
7.3.2 Pumping Disks with Channels of Circular Section 472
7.3.3 Impellers with Straight Radial Blades 475
7.3.4 Double-Acting Impeller with Straight Radial Blades 476
7.4 Radial Impellers for Non-clogging Pumps 478
7.5 Semi-axial Impellers 486
7.6 Axial Impellers and Diffusers 492
7.6.1 Features 492
7.6.2 Calculation and Selection of Main Dimensions 493
7.6.3 Basic Properties of Airfoils 497
7.6.4 Blade Design 504
7.6.5 Profile Selection 512
7.6.6 Design of Axial Diffusers 514
7.7 Inducers 516
7.7.1 Calculation of Inducer Parameters 517
7.7.2 Design and Shaping of an Inducer 523
7.7.3 Inducer Performance Prediction 524
7.7.4 Inducer Design Systematic 526
7.7.5 Matching the Inducer to the Impeller 527
7.7.6 Recommendations for Inducer Application 528
7.8 Volute Casings 531
7.8.1 Calculation and Selection of Main Dimensions 531
7.8.2 Design and Shaping of Volute Casings 536
7.8.3 Influence of the Volute Shape on Hydraulic Performance 543
7.9 Radial Diffusers with or Without Return Channels 545
7.9.1 Calculation and Selection of Main Dimensions 545
7.9.2 Design and Shaping of Radial Diffusers 551
7.10 Semi-axial Diffusers 553
7.11 Volutes Combined with a Diffuser or Stay Vanes 555
7.12 Annular Casings and Vaneless Diffusers 556
7.13 Inlet Casings for Between-Bearing Pumps 557
7.14 Analytical Method for Impeller Design 564
7.14.1 Motivation, Scope and Objectives 564
7.14.2 Meridional Section 566
7.14.3 Blade Design 572
7.14.4 Procedure for Developing a Design Systematic 573
7.14.5 Some Results 577
References 577
8 Numerical Flow Calculations 581
8.1 Overview 581
8.2 Quasi-3D-Procedures and 3D-Euler-Calculations 583
8.2.1 Quasi-3D-Procedures 583
8.2.2 Three-Dimensional Euler-Procedures 585
8.3 Basics of Navier-Stokes Calculations 585
8.3.1 The Navier-Stokes Equations 585
8.3.2 Turbulence Models 587
8.3.3 Treatment of Near-Wall Flows 591
8.3.4 Grid Generation 594
8.3.5 Numerical Procedures and Control Parameters 597
8.3.6 Boundary Conditions 599
8.3.7 Initial Conditions 601
8.3.8 Possibilities of 3D-Navier-Stokes-Calculations 602
8.4 Averaging and Post-processing 605
8.5 Impeller Calculations 615
8.5.1 Impeller Performance at Best Efficiency Flow Rate 615
8.5.2 Velocity Profiles 618
8.5.3 Influencing Parameters 619
8.5.4 Sample Calculation 619
8.6 Calculation of Collectors and Stages 622
8.6.1 Separate Calculation of the Collector 622
8.6.2 Steady Calculations of Stages or Complete Pumps 623
8.6.3 Unsteady Calculations 625
8.7 Two-Phase and Cavitating Flows 628
8.8 Calculation Strategies, Uncertainties, Quality Issues 632
8.8.1 Uncertainties, Sources and Reduction of Errors 633
8.8.2 CFD Quality Assurance 635
8.8.3 Comparison Between Calculation and Experiment 643
8.8.3.1 Evaluation of Measured Velocity Profiles 644
8.8.3.2 Evaluation of Industrial Performance Tests 645
8.8.4 Accuracy of Numerical Performance Prediction 646
8.8.5 CFD Set-Up Parameters 654
8.9 Criteria for Assessment of Numerical Calculations 658
8.9.1 General Remarks 658
8.9.2 Consistence and Plausibility of the Calculation 658
8.9.3 Will the Specified Performance Be Reached? 659
8.9.4 Maximization of the Hydraulic Efficiency 659
8.9.5 Stability of the Head-Capacity Curve 662
8.9.6 Unsteady Forces 662
8.10 Fundamental Considerations on CFD-Calculations 663
References 665
9 Hydraulic Forces 670
Abstract 670
9.1 Flow Phenomena in the Impeller Sidewall Gaps 670
9.2 Axial Forces 690
9.2.1 General Procedure for Calculating Axial Forces 690
9.2.2 Single-Stage Pumps with Single-Entry Overhung Impellers 694
9.2.3 Multistage Pumps 697
9.2.4 Double-Entry Impellers 702
9.2.5 Semi-axial Impellers 704
9.2.6 Axial Pumps 704
9.2.7 Expeller Vanes 704
9.2.8 Semi-open and Open Impellers 707
9.2.9 Unsteady Axial Thrust 710
9.2.10 Axial Thrust Calculation Overview 711
9.3 Radial Forces 712
9.3.1 Definition and Scope 712
9.3.2 Measurement of Radial Forces 714
9.3.3 Pumps with Single Volutes 716
9.3.4 Pumps with Double Volutes 722
9.3.5 Pumps with Annular Casings 724
9.3.6 Diffuser Pumps 724
9.3.7 Radial Forces Created by Non-uniform Approach Flows 725
9.3.8 Axial Pumps 727
9.3.9 Radial Forces in Pumps with Single-Channel Impellers 728
9.3.10 Radial Thrust Balancing 741
9.3.11 Radial Thrust Prediction 742
References 746
10 Noise and Vibrations 749
10.1 Unsteady Flow at the Impeller Outlet 750
10.2 Pressure Pulsations 753
10.2.1 Generation of Pressure Pulsations 754
10.2.2 Noise Generation in a Fluid 755
10.2.3 Influence Parameters of the Pump 755
10.2.4 Influence of the System 758
10.2.5 Scaling Laws 760
10.2.6 Measurement and Evaluation of Pressure Pulsations 761
10.2.7 Pressure Pulsations of Pumps in Operation 763
10.2.8 Damaging Effects of Pressure Pulsations 763
10.2.9 Design Guidelines 765
10.3 Component Loading by Transient Flow Conditions 768
10.4 Radiation of Noise 769
10.4.1 Solid-Borne Noise 769
10.4.2 Air-Borne Noise 771
10.5 Overview of Mechanical Vibrations of Centrifugal Pumps 774
10.6 Rotor Dynamics 776
10.6.1 Overview 776
10.6.2 Forces in Annular Seals 777
10.6.3 Hydraulic Impeller Interaction 787
10.6.4 Bearing Reaction Forces 791
10.6.5 Eigen Values and Critical Speeds 792
10.6.6 Rotor Instabilities 795
10.7 Hydraulic Excitation of Vibrations 799
10.7.1 Interaction Between Flows Through Rotor and Stator (RSI) 799
10.7.2 Rotating Stall (RS) 822
10.7.3 Various Hydraulic Excitation Mechanisms 825
10.8 Guidelines for the Design of Pumps with Low Sensitivity to Vibrations 841
10.9 Allowable Vibrations 844
10.10 General Vibration Diagnostics 845
10.10.1 Overview 845
10.10.2 Vibration Measurements 849
10.10.3 Vibration Diagnostics 851
10.11 Bearing Housing Vibrations: Mechanism, Diagnostics, Remedies 859
10.11.1 Hydraulic Excitation Mechanisms 860
10.11.2 Mechanical Reaction to Hydraulic Excitation 864
10.11.3 Hydraulic Versus Mechanical Remedies 867
10.11.4 Bearing Housing Vibration Diagnostics 868
10.12 Hydraulic and Acoustic Excitation of Pipe Vibrations 879
10.12.1 Excitation of Pipe Vibrations by Pumps 880
10.12.2 Excitation of Pipe Vibrations by Components 882
10.12.3 Acoustic Waves in Pumping Systems 883
10.12.4 Hydraulic Excitation by Vortex Streets 893
10.12.5 Coupling of Flow Phenomena with Acoustics 897
10.12.6 Pipe Vibration Mechanisms 902
10.13 Torsional Vibrations 906
10.14 Vertical-Pump Vibrations 910
10.14.1 Scope 910
10.14.2 Vibrations Related to Non-uniform Approach Flow and Inlet Recirculation 911
10.14.2.1 Slow Vortex Formation (CH1) 912
10.14.2.2 Fast Vortex Formation (CH2) 912
10.14.2.3 Radial Forces Generated by the Approach Flow 914
10.14.2.4 Asymmetric Approach Flow Causing Premature Inlet Recirculation (CH4) 921
10.14.2.5 Excessive Inlet Recirculation (CH5) 922
10.14.2.6 Model Testing Limitations 924
10.14.3 Hydraulic Design Issues 926
10.14.4 Influence of Discharge Pipe on Vibrations. Pressure Pulsations 927
10.14.5 Eigen Frequency Analysis 928
10.14.5.1 Shaft Eigen Frequencies and Vibrations 928
10.14.5.2 Eigen Frequencies of Motor and Structures Above the Foundation 929
10.14.5.3 Eigen Frequencies of Column Pipes 929
10.14.6 Case Histories “Eigen Frequencies” 931
10.14.7 Amplification Factors and Separation Margins 936
10.14.8 Line-Shaft Bearings 936
10.14.9 Trouble Shooting and Diagnostic Tools 938
10.14.10 Conclusions and Recommendations 942
References 948
11 Operation of Centrifugal Pumps 955
11.1 System Characteristics, Operation in Parallel or in Series 955
11.2 Pump Control 960
11.3 Static and Dynamic Stability 967
11.4 Start-Up and Shut-Down 970
11.5 Power Failure, Water Hammer 975
11.6 Allowable Operation Range 976
11.7 The Approach Flow to the Pump 979
11.7.1 Suction Piping Layout 979
11.7.2 Transient Suction Pressure Decay 982
11.7.3 Pump Intakes and Suction from Tanks with Free Liquid Level 987
11.7.4 Can Pumps 1003
11.8 Discharge Piping 1004
References 1007
12 Turbine Operation, General Characteristics 1009
12.1 Reverse Running Centrifugal Pumps Used as Turbines 1009
12.1.1 Theoretical and Actual Characteristics 1009
12.1.2 Runaway and Resistance Characteristics 1015
12.1.3 Estimation of Turbine Characteristics from Statistical Correlations 1017
12.1.4 Estimation of Turbine Characteristics from Loss Models 1022
12.1.5 Behavior of Turbines in Plants 1025
12.2 General Characteristics 1031
References 1037
13 Influence of the Medium on Performance 1038
13.1 Pumping Highly Viscous Fluids 1038
13.1.1 Effect of Viscosity on Losses and Performance Characteristics 1038
13.1.2 Estimation of Viscous Performance from the Characteristics Measured with Water 1050
13.1.2.1 Loss Analysis 1050
13.1.2.2 Empirical Correlation of Data Gained from a Loss Analysis 1051
13.1.2.3 Calculation of Viscous Performance Characteristics 1052
13.1.2.4 Empirical Procedures 1054
13.1.3 Influence of Viscosity on the Suction Capacity 1057
13.1.4 Start-Up of Pumps in Viscous Service 1057
13.1.5 Viscous Pumping Applications-Recommendations and Comments 1058
13.2 Pumping of Gas-Liquid Mixtures 1060
13.2.1 Two-Phase Flow Patterns in Straight Pipe Flow 1060
13.2.2 Two-Phase Flow in Pumps. Physical Mechanisms 1064
13.2.3 Calculation of Two-Phase Pump Performance 1074
13.2.4 Radial Pumps Operating with Two-Phase Flow 1080
13.2.5 Helico-axial Multiphase Pumps 1089
13.2.6 System Curves 1093
13.2.7 Slugs and Gas Pockets 1094
13.2.8 Free Gas, Dissolved Gas and NPSH 1096
13.3 Expansion of Two-Phase Mixtures in Turbines 1097
13.3.1 Calculation of the Work Transfer 1097
13.3.2 Prediction of Turbine Characteristics for Two-Phase Flow 1099
13.4 Hydraulic Transport of Solids 1102
13.5 Non-Newtonian Liquids 1110
References 1114
14 Selection of Materials Exposed to High Flow Velocities 1117
14.1 Impeller or Diffuser Fatigue Fractures 1118
14.1.1 Allowable Head per Stage 1118
14.1.2 Impeller Failures—Analysis and Prediction 1131
14.2 Corrosion 1136
14.2.1 Corrosion Fundamentals 1136
14.2.2 Corrosion Mechanisms 1137
14.2.3 Corrosion in Fresh Water, Cooling Water, Sewage 1144
14.2.4 Corrosion in Sea Water and Produced Water 1146
14.3 Erosion Corrosion in Demineralized Water 1152
14.4 Material Selection and Allowable Flow Velocities 1160
14.4.1 Definition of Frequently Encountered Fluids 1161
14.4.2 Metallic Pump Materials 1163
14.4.3 Impellers, Diffusers and Casings 1171
14.4.4 Wear Ring Materials 1182
14.4.5 Shaft Materials 1185
14.4.6 Materials for Feed Water and Condensate Pumps 1186
14.4.7 Materials for FGD-Pumps 1187
14.4.8 Composite Materials 1189
14.5 Hydro-abrasive Wear 1190
14.5.1 Influence Parameters 1190
14.5.2 Quantitative Estimation of Hydro-abrasive Wear 1193
14.5.2.1 Development of a Wear Model 1193
14.5.2.2 Calculation of Wear Rates 1196
14.5.3 Material Behavior and Influence of Solids Properties 1198
14.5.4 Material Selection 1203
14.5.5 Abrasive Wear in Slurry Pumps 1204
14.5.6 Erosion Patterns and Flow Mechanisms 1206
References 1213
15 Pump Selection and Quality Considerations 1216
15.1 The Pump Specification 1217
15.2 Determination of Pump Type and Size 1220
15.3 Technical Quality Criteria 1226
15.3.1 Hydraulic Criteria 1226
15.3.2 Manufacturing Quality 1230
15.4 High-Energy Pumps 1235
References 1239
16 Pump Testing 1240
16.1 Types of Tests and Measurements to Be Taken 1240
16.2 Test Loop Configurations 1243
16.2.1 Types and Layout of Closed Test Loops 1244
16.2.2 Closed Test Loop with Pressurizer 1244
16.2.3 Semi-open Test Loop, Fig. 16.2 1249
16.2.4 Closed Test Loop with Flow Through Tank with Free Water Level, Fig. 16.3 1251
16.2.5 Open Test Loops 1252
16.3 Instrumentation 1254
16.3.1 Pressure Measurement 1254
16.3.2 Flow Rate Measurement 1255
16.3.3 Power, Torque and Efficiency Measurement 1259
16.4 Test Preparation and Test Procedures 1260
16.4.1 Test Preparation 1260
16.4.2 Procedure for Performance Test 1261
16.4.3 Procedures for Cavitation Testing 1262
16.5 Test Evaluation and Accuracy 1263
16.6 Potential Testing Problems and Remedies 1263
References 1265
17 Appendices 1266
17.1 Units and Unit Conversion 1266
17.2 Properties of Saturated Water 1268
17.3 Solution of Gases in Water 1271
17.4 Physical Constants 1274
17.4.1 Atmospheric Pressure 1274
17.4.2 Acceleration Due to Gravity 1274
17.5 Sound Velocity in Liquids 1275
17.6 Mechanical Vibrations—Basic Notions 1276
17.7 Hydraulic Specification 1284
References 1289
Bibliography 1290
Standards 1291
Index 1292

Erscheint lt. Verlag 22.11.2019
Zusatzinfo XLVIII, 1264 p. 852 illus., 204 illus. in color.
Sprache englisch
Themenwelt Technik Bauwesen
Technik Maschinenbau
Schlagworte Fluid Dynamic Principles • Impact of 3-D Flow • Pump Hydraulics • Pump Types • Suction Capability and Cavitation
ISBN-10 3-030-14788-6 / 3030147886
ISBN-13 978-3-030-14788-4 / 9783030147884
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 100,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
CHF 117,20