Functional Analysis in Applied Mathematics and Engineering
Seiten
2019
CRC Press (Verlag)
978-0-367-39941-2 (ISBN)
CRC Press (Verlag)
978-0-367-39941-2 (ISBN)
Presenting excellent material for a first course on functional analysis , Functional Analysis in Applied Mathematics and Engineering concentrates on material that will be useful to control engineers from the disciplines of electrical, mechanical, and aerospace engineering.
This text/reference discusses:
rudimentary topology
Banach's fixed point theorem with applications
L^p-spaces
density theorems for testfunctions
infinite dimensional spaces
bounded linear operators
Fourier series
open mapping and closed graph theorems
compact and differential operators
Hilbert-Schmidt operators
Volterra equations
Sobolev spaces
control theory and variational analysis
Hilbert Uniqueness Method
boundary element methods
Functional Analysis in Applied Mathematics and Engineering begins with an introduction to the important, abstract basic function spaces and operators with mathematical rigor, then studies problems in the Hilbert space setting. The author proves the spectral theorem for unbounded operators with compact inverses and goes on to present the abstract evolution semigroup theory for time dependent linear partial differential operators. This structure establishes a firm foundation for the more advanced topics discussed later in the text.
This text/reference discusses:
rudimentary topology
Banach's fixed point theorem with applications
L^p-spaces
density theorems for testfunctions
infinite dimensional spaces
bounded linear operators
Fourier series
open mapping and closed graph theorems
compact and differential operators
Hilbert-Schmidt operators
Volterra equations
Sobolev spaces
control theory and variational analysis
Hilbert Uniqueness Method
boundary element methods
Functional Analysis in Applied Mathematics and Engineering begins with an introduction to the important, abstract basic function spaces and operators with mathematical rigor, then studies problems in the Hilbert space setting. The author proves the spectral theorem for unbounded operators with compact inverses and goes on to present the abstract evolution semigroup theory for time dependent linear partial differential operators. This structure establishes a firm foundation for the more advanced topics discussed later in the text.
Pedersen, Michael
Topological and Metric Spaces
Banach Spaces
Bounded Operators
Hilbert Spaces
Operators in Hilbert Space
Spectral Theory
Integral Operators
Semigroups of Evolution
Sobolev Spaces
Interpolation Spaces
Linear Elliptic Operators
Regularity of Hyperbolic Mixed Problems
The Hilbert Uniqueness Method
Exercises
References
Erscheinungsdatum | 18.09.2019 |
---|---|
Reihe/Serie | Studies in Advanced Mathematics |
Verlagsort | London |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 576 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 0-367-39941-5 / 0367399415 |
ISBN-13 | 978-0-367-39941-2 / 9780367399412 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Band 5: Hydraulik, Stromfadentheorie, Wellentheorie, Gasdynamik
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90