Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Polymer Nanocomposites in Biomedical Engineering (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
X, 409 Seiten
Springer International Publishing (Verlag)
978-3-030-04741-2 (ISBN)

Lese- und Medienproben

Polymer Nanocomposites in Biomedical Engineering -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents a thorough discussion of the physics, biology, chemistry and medicinal science behind a new and important area of materials science and engineering: polymer nanocomposites. The tremendous opportunities of polymer nanocomposites in the biomedical field arise from their multitude of applications and their ability to satisfy the vastly different functional requirements for each of these applications. In the biomedical field, a polymer nanocomposite system must meet certain design and functional criteria, including biocompatibility, biodegradability, mechanical properties, and, in some cases, aesthetic demands. 

The content of this book builds on what has been learnt in elementary courses about synthesising polymers, different nanoparticles, polymer composites, biomedical requirements, uses of polymer nanocomposites in medicine as well as medical devices and the major mechanisms involved during each application. The impact of hybrid nanofillers and synergistic composite mixtures which are used extensively or show promising outcomes in the biomedical field are also discussed. These novel materials vary from inorganic/ceramic-reinforced nanocomposites for mechanical property improvement to peptide-based nanomaterials, with the chemistry designed to render the entire material biocompatible. 

Preface 6
Contents 9
1 A Fundamental Approach Toward Polymers and Polymer Composites: Current Trends for Biomedical Applications 11
Abstract 11
1 Introduction 11
2 Polymers 13
2.1 Classification of Polymers 13
2.2 Natural Polymer and Their Composites for Biomedical Applications 13
2.2.1 Collagen 13
2.2.2 Silk 14
2.2.3 Hyaluronic Acid (HA) 15
2.2.4 Chitosan (CS) 16
2.2.5 Cellulose 16
2.2.6 Alginate 18
2.3 Synthetic Polymers and Their Composites for Biomedical Applications 19
2.3.1 Polycaprolactone (PCL) 19
2.3.2 Poly(Methyl Methacrylate) (PMMA) 20
2.3.3 Poly(l-Lactic Acid) (PLLA) 21
2.3.4 Poly(Lactic-Co-Glycolic) Acid (PLGA) 21
2.3.5 Poly(Ethylene Glycol) (PEG) 22
2.3.6 Polystyrene (PS) 23
2.3.7 Polyvinylidene Fluoride (PVDF) 25
2.4 Gas Permeable Polymeric Membranes for Biomedical Applications 26
2.5 Other Polymeric Composites for Biomedical Applications 28
2.6 Polymer Microarrays for Biomedical Applications 30
2.7 Challenges and Future Prospective 32
2.8 Conclusion 32
Acknowledgements 32
References 33
2 Synthesis of Bio-based Polymer Composites: Fabrication, Fillers, Properties, and Challenges 39
Abstract 39
1 Introduction 39
1.1 Polymer Composites 40
1.2 Bio-based Materials 41
2 Fabrication/Processing of Bio-based Polymer Composites 41
2.1 Thermoplastic-Based Composites 42
2.1.1 Injection Molding 43
2.1.2 Extrusion 44
2.2 Thermoset-Based Composites 45
2.2.1 Injection Molding 45
2.2.2 Compression Molding 45
2.2.3 Transfer Molding 46
2.3 Bio-based Composites 47
2.3.1 Solvent Casting and Particulate Leaching (SCPL) 47
2.3.2 Emulsion Freeze Drying 48
2.3.3 Electrospinning 49
2.3.4 Blow Film Extrusion 50
2.3.5 3D Printing 50
3 Fillers and Reinforcements Used in the Preparation of Bio-based Composites 51
3.1 Bio-based Fillers/Reinforcements with Non-bio-based Polymers 51
3.2 Non-bio-based Fillers/Reinforcements with Bio-based Polymers 53
3.3 Bio-based Filler/Reinforcement and Bio-based Polymer 53
4 Properties of Bio-based Polymer Composites Used for Biomedical Applications 56
5 Challenges Encountered in the Design of Novel Bio-based Polymer Composites for Biomedical Applications 58
5.1 Desired Properties for Biomedical Materials 58
5.2 Challenges Faced by Bio-based Materials 59
6 Conclusion 59
References 60
3 Amorphous and Semicrystalline Thermoplastic Polymer Nanocomposites Applied in Biomedical Engineering 66
Abstract 66
1 Introduction 66
2 Processing of the Amorphous and the Semicrystalline Thermoplastic Nanocomposites 69
2.1 Template Synthesis (Sol–Gel Technology) 69
2.2 Intercalation Methods 70
2.2.1 Solution Intercalation Method 71
2.2.2 In Situ Intercalative Polymerization Method 72
2.2.3 Melt Intercalation Method 72
3 Examples of the Polymers Used in Biomedical Engineering 73
3.1 Amorphous Polymers 73
3.1.1 Polycarbonate (PC) 73
3.1.2 Rubber Nanocomposites 74
3.2 Thermoplastic Polyurethane (TPU) 74
3.2.1 Polystyrene (PS) 74
3.2.2 Polyvinylidene Difluoride (PVDF) 75
3.3 Semicrystalline Polymers 75
3.3.1 Polyethylene (PE) 76
3.3.2 Polypropylene (PP) 76
3.3.3 Polyamide (PA) 76
3.4 Polymer–Clay Nanocomposites Types 77
3.4.1 Polyurethane–Urea (PUU) 78
4 Nanoscale Reinforcements in the Polymer Nanocomposites 78
4.1 Carbon Nanotubes (CNTs) 79
4.2 Graphene 79
4.3 Nanoclays 80
5 Polymer Nanocomposites in Biomedical Applications 80
5.1 Scaffold Tissue Engineering 82
5.2 Drug Delivery 84
5.3 Dental Implants 85
5.4 Polymer Nanocomposites as Biosensors 86
6 Conclusions 87
References 87
4 Multi-functional Lipid-Based Polymer Composites for In Vivo Imaging, Tissue Healing, Cell Rejuvenation and Theranostic Applications 94
Abstract 94
1 Introduction 94
2 Classification of Lipids 95
2.1 Fatty Acids 95
2.2 Phospholipids 96
2.3 Glycerolipids 96
2.4 Glycerophospholipids 97
2.5 Sphingolipids 97
2.6 Sterol Lipids 98
2.7 Prenol Lipids 98
2.8 Saccharolipids 98
2.9 Galactolipids and Sulfolipids 98
2.10 Polyketides 99
2.11 Lipoproteins 99
2.12 Liposomes 99
2.12.1 Preparation Methods 100
2.12.2 Formulation and Functionalization 100
2.13 Cubosomes 101
2.14 Hexosomes 102
2.15 Lipoplexes and Polyplexes 102
2.16 Tubules 102
2.17 Ribbons 103
2.18 Cochleates 103
3 Lipid Functionalization with Polymeric Materials 104
4 Characterization of Lipid-Based Polymers 105
5 Applications of Lipid-Based Polymer 106
5.1 Cell Rejuvenation and Tissue Engineering 106
5.1.1 Combining Liposomes with Scaffolds 106
5.1.2 Growth/Differentiation Factor Delivery 108
5.1.3 Therapeutic Gene Delivery 109
5.1.4 Magnetite Cationic Liposomes 110
5.2 In Vivo Imaging Applications 110
5.2.1 Liposomes as Nanocarriers of Imaging Agents 111
Fluorescence Imaging 111
Magnetic Resonance Imaging (MRI) 112
Ultrasound Imaging 112
Nuclear Imaging 113
6 Concluding Remarks 113
References 114
5 Biomedical Applications of Electrospun Polymer Composite Nanofibres 119
Abstract 119
1 Introduction 120
2 Biomedical Applications of Various Polymer-Based Electrospun Composite Nanofibers 126
2.1 Biomedical Applications of Polyvinyl Alcohol-Based Electrospun Composite Nanofibers 126
2.2 Biomedical Applications of Polylactic Acid-Based Electrospun Composite Nanofibers 130
2.3 Biomedical Applications of Polyglycolic Acid-Based Electrospun Composite Nanofibers 137
2.4 Biomedical Applications of Polylactic-co-Glycolic Acid-Based Electrospun Composite Nanofibers 139
2.5 Biomedical Applications of Polycaprolactone-Based Electrospun Composite Nanofibers 145
2.6 Biomedical Applications of Polyethylene Glycol-Based Electrospun Composite Nanofibers 147
2.7 Biomedical Applications of Polyurethane-Based Electrospun Composite Nanofibers 150
2.8 Biomedical Applications of Polyethyleneimine-Based Electrospun Composite Nanofibers 153
2.9 Biomedical Applications of Polypyrrole-Based Electrospun Composite Nanofibers 154
2.10 Biomedical Applications of Polyaniline-Based Electrospun Composite Nanofibers 158
2.11 Biomedical Applications of Poly(3,4-ethylenedioxythiophene)-Based Electrospun Composite Nanofibers 160
3 Conclusions 162
References 163
6 Biomedical Applications of Hydroxyapatite Nanocomposites 174
Abstract 174
1 Introduction 175
2 Established Hydroxyapatite Nanocomposite Information 176
3 Classification of HA Nanocomposite 178
3.1 Polymer-Based Nanocomposites 179
3.1.1 Biopolymers Based HA Nanaocomposites 179
3.1.2 Synthetic Polymers-Based HA Nanocomposites 180
3.1.3 Hybrids-Based HA Nanocomposites 180
4 Applications of Hydroxyapatite Nanocomposites 180
4.1 Tissue Engineering Applications 180
4.1.1 Biopolymer-Based HA Nanocomposites 181
4.1.2 Synthetic Polymer-Based HA Nanocomposite 184
4.1.3 Hybrids Polymer-Based HA Nanocomposite 187
4.1.4 Miscellaneous Nanocomposites 187
4.2 Applications of HA Nanocomposites as Drug Delivery Systems 188
4.2.1 Biopolymer-Based HA Nanocomposite 188
4.2.2 Synthetic Polymer-Based HA Nanocomposite 191
4.2.3 Hybrids Polymer-Based HA Nanocomposite 192
4.2.4 Miscellaneous Nanocomposites 192
4.3 Applications of HA Nanocomposites as Gene Carriers 194
4.3.1 Biopolymer-Based HA Nanocomposite 194
4.3.2 Synthetic Polymer-Based HA Nanocomposite 196
4.3.3 Hybrids Polymer-Based HA Nanocomposites 196
4.3.4 Miscellaneous Nanocomposites 197
4.4 Application of HA Nanocomposites for Photodynamic Therapy 197
4.4.1 Biopolymer-Based HA Nanocomposite 198
4.4.2 Synthetic Polymer-Based HA Nanocomposite 199
4.4.3 Hybrids-Based HA Nanocomposites 199
4.4.4 Miscellaneous Nanocomposites 202
5 Concluding Remarks 202
References 203
7 3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations 212
Abstract 212
1 Evolution of 3D Printing 214
2 Concept of 3D Organ-Printing Technology 214
3 Methods in Bioprinting—A Brief Description 215
4 Approaches for 3D Bioprinting 215
4.1 Biomimicry 216
4.2 Autonomous Self-assembly 216
4.3 Mini-Tissues 216
5 Tissue Bioprinting Strategies 217
5.1 Inkjet Bioprinting 217
5.1.1 Thermal Inkjet Printers 218
5.1.2 Piezoelectric Inkjet Printers 218
5.2 Micro-Extrusion Bioprinting 219
5.3 Laser-Assisted Bioprinting 220
6 Polymers with Biomedical Compatibility 220
7 Hydrogels 221
7.1 Classification of Hydrogels 222
7.1.1 Physical Cross-Linkage Hydrogels 224
7.1.2 Chemical Cross-Linkage Hydrogels 225
7.2 Hydrogels Classified Under Physical Properties 227
7.2.1 Solid Hydrogels 227
7.2.2 Semi-solid Hydrogels 227
7.2.3 Liquid Hydrogels 228
7.3 Role of Hydrogels in Biomedical Applications 228
8 Need for Polymeric Hydrogels 229
8.1 Polymeric Hydrogels in Biomedical Applications 229
8.2 Hydrogels for Skin Bioprinting 230
8.3 Hydrogels in Tissue Regeneration 230
9 Different Approaches for Tissue Engineering 232
10 Selection of Bioinks 233
11 Advantage of 3D Printing Technology 234
12 Conclusions 235
References 235
8 Polymer Composite Strategies in Cancer Therapy, Augment Stem Cell Osteogenesis, Diagnostics in the Central Nervous System, and Drug Delivery 241
Abstract 241
1 Introduction 241
2 Cancer 243
2.1 Polymer Composite for Drug Delivery System 244
2.2 Polymer Composite Properties 244
2.3 Polymeric Composite Degradation 245
2.4 DDRM of Polymer Composites 246
3 Polymeric Nanocarrier for Cancer Chemotherapy 247
3.1 Designing Material 247
3.2 Drugs for Cancer Therapy 248
3.3 Polymer Composite Needs for Cancer Therapies 248
3.4 Important Requirement of Nanostructured Drug Delivery System 250
3.5 Site-Specific Release of Anticancer Drug 252
4 Osteogenesis 254
4.1 Types of Ossification 254
4.2 Intramembranous Ossification Process 255
4.3 Endochondral Ossification Process 255
4.4 Stem Cells for Osteogenesis 256
4.5 Morphology of Stem Cells 256
4.6 Environment for Osteogenesis 257
4.7 Polymer Composites for Osteogenesis: An Overview 257
4.8 Polymer Composite for Stem Cell Augmentation 257
5 Central Nervous System Drug Delivery 260
5.1 Receptor-Mediated Transcytosis 261
5.2 The Role of Other Barriers 261
5.3 Nanoparticles Based Drug Delivery 262
5.4 Stimuli-Responsive Nanocarriers 263
5.4.1 Intrinsic Stimuli-Responsive Nanocarriers 263
5.4.2 pH-Responsive Nanocarriers 264
5.4.3 Enzyme-Responsive Nanocarriers 264
5.4.4 Redox-Responsive Nanocarriers 264
5.5 External Stimuli-Responsive Nanocarriers 264
5.5.1 Magnetically Responsive Nanocarriers 264
5.5.2 Light-Responsive Nanocarriers 265
5.5.3 Multifunctionally Responsive Nanocarriers 265
5.6 Polymer Micelles 265
5.7 Injectable Hydrogels 265
5.8 General Strategies for Crossing the BBB Through Polymeric NanoParticles 266
5.8.1 Role of Surface Charge 266
5.8.2 Role of Size 267
5.8.3 Role of Surface Modification 267
6 Conclusion 267
References 268
9 Photopolymerization of Polymeric Composites in Drug Delivery, Tissue Engineering, and Other Biomedical Applications 277
Abstract 277
1 Introduction 277
2 Photoinitiators: Modes of Action and Classifications 279
2.1 Classes of Photoinitiators 280
3 Biocompatibility of Photoinitiation System 283
4 Acrylates and Methacrylates-Based Photo-Curable Polymeric Matrices 285
5 Forms, Pharmaceutical, and Biomedical Applications of Photo-cross-linked Polymers 288
5.1 Photo-cross-linked Hydrogels 289
5.2 Photo-cross-linked Biodegradable Elastomers 291
5.3 Other Biomedical Applications 293
5.3.1 Tissue Engineering 293
5.3.2 Cell Encapsulation 295
5.3.3 Therapeutic Protein Delivery 296
5.3.4 Genes Delivery 297
5.3.5 Drug Delivery of Small Molecules 297
6 Conclusion 298
References 298
10 Shape Memory Polymer Composites in Biomedical Field 304
Abstract 304
1 Introduction 304
2 Shape Memory Polymers 307
3 Designing Aspects of Shape Memory Polymers 308
3.1 Mechanical Properties 309
3.2 Biocompatibility 311
3.2.1 Cytotoxicity 312
Mitochondrial Activity 313
Membrane Damage 314
Cytokines Production 314
3.3 Hemocompatibility 315
3.4 Genotoxicity 316
3.5 Histocompatibility 317
3.6 Biodegradability 318
3.7 Sterilizability 319
4 Shape Memory Polymers in the Biomedical Field 320
5 Electro-active Shape Memory Polymer Composites 324
5.1 Shape Memory Polymers Containing Metallic (Ni) Fillers 324
5.2 Shape Memory Polymer Containing Electromagnetic Filler 324
5.3 Shape Memory Polymer Containing CNTs as Filler 325
6 Biomedical Applications of SMPs 325
7 Conclusions 330
References 331
11 Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications 335
Abstract 335
1 Introduction 336
1.1 Types of Nanocomposites 337
1.1.1 Ceramic Matrix Nanocomposites 337
1.1.2 Metal Matrix Nanocomposites 337
1.1.3 Polymer Nanocomposites 337
1.1.4 Polymer/Silver Nanocomposites 338
2 Methods of Synthesis 339
2.1 Synthesis of Silver Nanoparticles 339
2.2 Microwave Synthesis and Related Properties of Silver Nanoparticles Synthesis 341
2.3 Synthesis of Polymer/Silver Nanocomposites 342
2.3.1 In Situ Polymerization 342
2.3.2 Ex Situ Polymerization 344
3 Applications of Polymer/Silver Nanocomposites 345
3.1 Biomedical Applications 345
3.1.1 Antibacterial Agent 347
3.1.2 Antifungal Agent 349
3.1.3 Antiviral Agent 349
3.1.4 Antimicrobial Catheters 350
3.1.5 Antimicrobial Therapeutic Gel 350
3.2 Clinical Fabrics 351
3.3 Cancer Therapy 351
3.4 Biological Assays 351
3.5 Protein Detection 352
3.6 Other Miscellaneous Applications 352
4 Polymer-/AgNP-Based EMI Shielding 353
5 Polymer-/AgNP-Based Supercapacitor 356
6 Polymer-/AgNP-Based Fuel Cells 361
7 Polymer-/AgNP-Based Sensors 367
8 Conclusion 369
Acknowledgements 370
References 370
12 Electrospun Polymeric Nanofibers: Fundamental Aspects of Electrospinning Processes, Optimization of Electrospinning Parameters, Properties, and Applications 378
Abstract 378
1 Introduction 379
2 Electrospinning Process 383
2.1 Fundamental Aspects 383
2.2 Effect of Optimization Parameters on Electrospinning Process 386
2.2.1 Effect of Solvent 387
2.2.2 Effect of Polymer Concentration and Solution Viscosity 387
2.2.3 Effect of Solution Conductivity 389
2.2.4 Effect of Solution Flow Rate 389
2.2.5 Effect of Applied Voltage 389
2.2.6 Effect of Needle-Tip-to-Collector Distance and Needle Diameter 390
2.2.7 Effect of Relative Humidity and Temperature 390
2.3 Properties of Electrospun Nanofibers 390
3 Biomedical Applications of Electrospun Nanofibers 391
3.1 Tissue Engineering Applications 391
3.2 Drug Delivery Applications 398
3.3 Wound-Dressing Applications 402
4 Conclusions 407
References 408
Correction to: Polymer Nanocompositesin Biomedical Engineering 413

Erscheint lt. Verlag 29.1.2019
Reihe/Serie Lecture Notes in Bioengineering
Lecture Notes in Bioengineering
Zusatzinfo X, 409 p.
Verlagsort Cham
Sprache englisch
Themenwelt Medizin / Pharmazie
Technik Maschinenbau
Wirtschaft
Schlagworte 3D printing techniques • Biocompatibility • Biodegradability • Hybrid nanofillers • Polymer Nanocomposites
ISBN-10 3-030-04741-5 / 3030047415
ISBN-13 978-3-030-04741-2 / 9783030047412
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich