Robust Statistics (eBook)
464 Seiten
John Wiley & Sons (Verlag)
978-1-119-21466-3 (ISBN)
Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book.
Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates.
* Explains both the use and theoretical justification of robust methods
* Guides readers in selecting and using the most appropriate robust methods for their problems
* Features computational algorithms for the core methods
Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models.
Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Ricardo A. Maronna, Consultant Professor, National University of La Plata, Argentina R. Douglas Martin, Departments of Applied Mathematics and Statistics, University of Washington, USA Victor J. Yohai, Department of Mathematics, University of Buenos Aires, and CONICET, Argentina Matías Salibián-Barrera, Department of Statistics, The University of British Columbia, Canada
Preface
Preface to the First Edition
About the Companion Website
1 Introduction
2 Location and Scale
3 Measuring Robustness
4 Linear Regression 1
5 Linear Regression 2
6 Multivariate Analysis
7 Generalized Linear Models
8 Time Series
9 Numerical Algorithms
10 Asymptotic Theory of M-estimators
11 Description of Datasets
References
Index
Erscheint lt. Verlag | 19.10.2018 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mustererkennung • Pattern Analysis • Probability & Mathematical Statistics • Regression Analysis • Regressionsanalyse • Statistics • Statistik • Wahrscheinlichkeitsrechnung u. mathematische Statistik |
ISBN-10 | 1-119-21466-1 / 1119214661 |
ISBN-13 | 978-1-119-21466-3 / 9781119214663 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich