Geometric Modelling
Springer Wien (Verlag)
978-3-211-82666-9 (ISBN)
Prof. Dr. Hartmut Noltemeier ist Emeritus der Universität Würzburg.
Parametric Offset Surface Approximation.- Unimodal Properties of Generalized Ball Bases.- Nef Polyhedra: A Brief Introduction.- Complex PDE Surface Generation for Analysis and Manufacture.- Weight Estimation of Rational Bézier Curves and Surfaces.- The Use of Multiple Knots for B-spline Finite Element Approximations to PDE Surfaces.- Geometric Design with Trimmed Surfaces.- The Shape of the Overhauser Spline.- Local Energy Fairing of B-spline Curves.- Integrating Analysis Tools into the Design Process through Constrained Parametric Structures.- Localized Radial Basis Methods Using Rational Triangle Patches.- Repeated Knots in Least Squares Multiquadric Functions.- Stability Concept for Surfaces.- A Quartic Spline Based on a Variational Approach.- A Knowledge-Based System for Geometric Design.- Bézier Representation of Trim Curves.- Control Point Representations of Trigonometrically Specified Curves and Surfaces.- Towards Optimality in Automated Feature Recognition.- Solid Modeling with Constrained Form Features.- A Hybrid Method for Shape-Preserving Interpolation with Curvature-Continuous Quintic Splines.- Scale-Invariant Functionals for Smooth Curves and Surfaces.- The C-Tree: A Dynamically Balanced Spatial Index.- Piecewise Linear Approximation of Trimmed Surfaces.- An Efficient Algorithm for Evaluating Polynomials in the Pòlya Basis.
Erscheint lt. Verlag | 6.7.1995 |
---|---|
Reihe/Serie | Computing Supplementa |
Mitarbeit |
Stellvertretende Herausgeber: R. Albrecht |
Zusatzinfo | VII, 361 p. 180 illus. |
Verlagsort | Vienna |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 685 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | algorithms • Calculus • data structures • Geometric Modelling • Geometry • Modeling • NURBS • partial differential equation • solid modeling • Spline • Splines • stability |
ISBN-10 | 3-211-82666-1 / 3211826661 |
ISBN-13 | 978-3-211-82666-9 / 9783211826669 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich