Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Developing Novel Spinning Methods to Fabricate Continuous Multifunctional Fibres for Bioapplications (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XXXI, 146 Seiten
Springer International Publishing (Verlag)
978-3-319-95378-6 (ISBN)

Lese- und Medienproben

Developing Novel Spinning Methods to Fabricate Continuous Multifunctional Fibres for Bioapplications - Azadeh Mirabedini
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes the development of three dimensional electroactive fibres using a novel coaxial wet-spinning approach from organic conductors in combination with non-conducting hydrogel polymers. This book also presents the characterization and evaluation of multiaxial biofibres in terms of mechanical, physical, electrochemical and biological properties, and explores their use in a diverse range of applications including implantable electrodes, drug delivery systems and energy-storage systems.

In the first chapter, the author highlights the significance of engineering three dimensional fibres, introduces the involved hydrogels and organic conductors with emphasis on their biomedical application, and collects some of the previously established methods for fabrication of biofibres. In the second chapter, particular attention is given to the overall experimental fabrication methods and characterization analyses conducted in the work. Chapters three to five present the main findings of this work, in which readers will discover how novel hybrid hydrogel fibres with an inner core of chitosan and alginate were prepared and characterized, how graphene was incorporated into coaxial wet-spun biofibres, and how one-dimensional triaxial fibres were developed using a novel coaxial wet-spinning fibre production method and applied as potential battery devices. In the final chapter of this work, the author summarizes the main achievements of the work and outlines some recommendations for future research.



Azadeh Mirabedini is currently a postdoctoral research fellow at the Swinburne University of Technology. She previously majored in polymer engineering and coatings from the Amirkabir University of Technology, through her undergraduate studies. After undertaking a number of projects as well as tutoring several courses at the university, she commenced her master's studies at Iran Polymer and Petrochemical Institute. Azadeh's research interests include fabrication of smart hybrid macro/nano structures, soft robotics and nanomaterials. Azadeh joined Prof Gordon Wallace's group at Intelligent Polymer Research Institute (IPRI) within the University of Wollongong to complete her PhD  in 2012. Her project was focused on developing biocompatible electroactive multiaxial fibres with great potential to be used as implantable electrodes or power sources within the body media. She has then worked as a research associate at IPRI  to develop and analysis electroactive 3D hybrid scaffolds for nerve/muscle regeneration applications till November 2017.

Azadeh Mirabedini is currently a postdoctoral research fellow at the Swinburne University of Technology. She previously majored in polymer engineering and coatings from the Amirkabir University of Technology, through her undergraduate studies. After undertaking a number of projects as well as tutoring several courses at the university, she commenced her master’s studies at Iran Polymer and Petrochemical Institute. Azadeh’s research interests include fabrication of smart hybrid macro/nano structures, soft robotics and nanomaterials. Azadeh joined Prof Gordon Wallace's group at Intelligent Polymer Research Institute (IPRI) within the University of Wollongong to complete her PhD  in 2012. Her project was focused on developing biocompatible electroactive multiaxial fibres with great potential to be used as implantable electrodes or power sources within the body media. She has then worked as a research associate at IPRI  to develop and analysis electroactive 3D hybrid scaffolds for nerve/muscle regeneration applications till November 2017.

Supervisor’s Foreword 7
Abstract 9
Preface 11
Thesis Outline 12
Parts of this thesis have been published in the following Journal articles:Azadeh Mirabedini, Javad Foroughi, Gordon G. Wallace, “Developments in Conducting Polymer Fibres: From Established Spinning Methods toward Advanced Applications”, RSC Advances 2016, 6(50), 44687–44716.Azadeh Mirabedini, Javad Foroughi, Brianna Thompson, Gordon G. Wallace, “Fabrication of Coaxial Wet-Spun Graphene–Chitosan Biofibers**”, Advanced Engineering Materials 2015, 18(2), 284–293.Azadeh Mirabedini, Javad Foroughi, Tony Romeo, Gordon G. Wallace, “Development and Characterisation of Novel Hybrid Hydrogel Fibres”, Macromolucular Materials Engineering 2015, 300(12), 1217–1225.Conference ProceedingsJavad Foroughi, Azadeh Mirabedini, Carbon Nanotube Yarn as Novel Artificial Muscles, 4th Nano Today Conference, 6–10th December 2015, Dubai, United Arab Emirates.Azadeh Mirabedini, Javad Foroughi, Gordon Wallace, Investigation of Electrochemical Actuation Properties of Chitosan-based Novel Microstructures, Asian Textile Conference (ATC-13), 3–6th Nov. 2015, Deakin University, Geelong, Australia.Azadeh Mirabedini, Javad Foroughi, Gordon Wallace, Fabrication Of Multifunctional Coaxial Fibres For Bioapplications, Diamond and Carbon Materials (DIAM), 6–10th September 2015, Bad Hamburg, Germany.Azadeh Mirabedini, Javad Foroughi, Gordon Wallace, Walking on a thin edge, Coaxial/triaxial spinning is a high wire act, 12–15th July 2015, Gold-coast, Australia.Azadeh Mirabedini, Shazed Aziz, Rodrigo Lozano, Javad Foroughi, Gordon G. Wallace, 10th Annual International Electromaterials Science Symposium, Hydrogel-based Twisted Fibre Actuators looking into Physicochemical/biological properties 12–14th February 2014, University of Wollongong, Australia.Javad Foroughi, Azadeh Mirabedini, Novel biopolymer fibres for biomedical application, New Zealand Controlled Release Society (NZCRS) Workshop, 22–24th November 2014, University of Auckland, New Zealand.Azadeh Mirabedini, Javad Foroughi, Gordon Wallace, ANN Early Career Workshop (ACR), A Novel method for fabrication of wet-spun conductive multifunctional coaxial fibres, 10–11th July 2014, University of Technology Sydney(UTS), Australia.Azadeh Mirabedini, Javad Foroughi, Gordon G. Wallace, “Workshop on Materials for Drug Delivery”, 11th February 2014 University of Wollongong, Australia.Azadeh Mirabedini, Javad Foroughi, Brianna Thompson, Sina Jamali, Gordon Wallace, Multifunctional coaxial electroactive fibres, 9th Annual International Electromaterials Science Symposium, 12–14th February 2014, University of Wollongong, Australia.Azadeh Mirabedini, Javad Foroughi, and Gordon G. Wallace, A Novel Wet-spinning Method to Produce Triaxial Fibres, ACES Full Centre Meeting &
Conference Proceedings 14
Manuscripts in Progress 15
Acknowledgements 16
Contents 18
Abbreviations 21
List of Figures 23
List of Tables 28
1 Introduction and Literature Review 29
1.1 Introduction 29
1.1.1 Material Considerations for Biomedical Applications 29
1.1.2 Fabrication Methods 40
1.1.3 Manufacturing Processes for Fabrication of Coaxial Biofibres 49
1.2 A Brief Overview of Fibre-Based Scaffolds 56
1.3 Thesis Objectives 57
References 58
2 General Experimental 74
2.1 Components and Spinning Solutions 74
2.1.1 Materials 74
2.1.2 Gel Spinning Precursors 74
2.1.3 Graphene Oxide Liquid Crystal Dispersion 75
2.1.4 PEDOT:PSS Dispersion 75
2.2 Experimental Methods 76
2.2.1 Spinning Techniques 76
References 82
3 Preparation and Characterisation of Novel Hybrid Hydrogel Fibres 83
3.1 Introduction 83
3.2 Experimental 85
3.2.1 Materials 85
3.2.2 Wet-Spinning of Chitosan, Alginate and Chit-Alg Coaxial Fibres 85
3.2.3 Characterisation Methods 86
3.3 Results and Discussion 87
3.3.1 Spinnability Versus Concentration 87
3.3.2 Rheology 88
3.3.3 Continuous Spinning of Coaxial Fibres 89
3.3.4 Morphology of As-Prepared Fibres 89
3.3.5 Mechanical Properties of As-Prepared Fibres 93
3.3.6 Swelling Properties in SBF 94
3.3.7 Thermogravimetric Analysis 95
3.3.8 Cytocompatibility Experiment 96
3.3.9 In Vitro Release Measurement 97
3.4 Conclusion 99
References 99
4 Fabrication of Coaxial Wet-Spun Biofibres Containing Graphene Core 104
4.1 Introduction 104
4.2 Experimental 106
4.2.1 Materials 106
4.2.2 Fibre Spinning 106
4.2.3 Characterisations of rGO and Coaxial Fibres 108
4.3 Results and Discussion 110
4.3.1 Optimization of Spinning Solutions 110
4.3.2 Morphology of As-Prepared Fibres 112
4.3.3 FTIR Spectroscopy Results 116
4.3.4 Mechanical and Electrical Properties 117
4.3.5 Surface Wettability of As-Spun Fibres 120
4.3.6 Cyclic Voltammetry 120
4.3.7 Raman Spectroscopy Results 123
4.3.8 In Vitro Bioactivity Experiments 124
4.4 Conclusion 126
References 127
5 Development of One-Dimensional Triaxial Fibres as Potential Bio-battery Structures 132
5.1 Introduction 132
5.2 Experimental 134
5.2.1 Materials 134
5.2.2 Dispersion Preparation 134
5.2.3 Coaxial Wet-Spinning of Chit-PEDOT and Alg-PEDOT 135
5.2.4 Polymerisation of Pyrrole 135
5.2.5 Fourier Transform Infrared 136
5.2.6 Analysis 137
5.3 Results and Discussions 140
5.3.1 Characterisation of Spinning Solutions 140
5.4 Conclusion 156
References 158
6 Conclusion and Future Work 163
6.1 General Conclusion 163
6.2 Comparison of Fibre Properties 166
6.2.1 Mechanical Properties 167
6.2.2 Electrochemical Properties 167
6.3 Recommendations for Future Work 169

Erscheint lt. Verlag 23.7.2018
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XXXI, 146 p. 59 illus., 48 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik Bauwesen
Technik Maschinenbau
Schlagworte Biocompatible Electroactive Fibres • Coaxial Biofibres • electrospinning • Flexible Hybrid Electrodes • Hybrid Electroactive Scaffolds • Implantable Bio-inspired Fibres • Implantable Electrodes • Multilayered Fibres • Natural Hydrogels • Synthetic Nerve Fibres • Wet-Spinning
ISBN-10 3-319-95378-8 / 3319953788
ISBN-13 978-3-319-95378-6 / 9783319953786
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich