Risk and Reward (eBook)
XX, 150 Seiten
Springer International Publishing (Verlag)
978-3-319-91385-8 (ISBN)
For decades, casino gaming has been steadily increasing in popularity worldwide. Blackjack is among the most popular of the casino table games, one where astute choices of playing strategy can create an advantage for the player.
RISK AND REWARD analyzes the game in depth, pinpointing not just its optimal strategies but also its financial performance, in terms of both expected cash flow and associated risk.
The book begins by describing the strategies and their performance in a clear, straightforward style. The presentation is self-contained, non-mathematical, and accessible to readers at all levels of playing skill, from the novice to the blackjack expert. Careful attention is also given to simplified, but still nearly optimal strategies that are easier to use in a casino. Unlike other books in the literature the author then derives each aspect of the strategy mathematically, to justify its claim to optimality. The derivations mostly use algebra and calculus, although some require more advanced analysis detailed in supporting appendices. For easy comprehension, formulae are translated into tables and graphs through extensive computation.
This book will appeal to everyone interested in blackjack: those with mathematical training intrigued by its application to this popular game as well as all players seeking to improve their performance.
N. Richard Werthamer is retired from a successful career as a scientist and executive,
N. Richard Werthamer is retired from a successful career as a scientist and executive,mostly recently as the Executive Officer of The American Physical Society. He earneda B.A. summa cum laude from Harvard College, followed by a Ph.D. from the Universityof California, Berkeley. His original scientific research has been published in theworld's leading journals. In RISK AND REWARD, he applies that background to hisanalysis of blackjack.
Contents Preface Introduction Working with the Interactive Edition Part I 1 The Game 1.1 History of Casino Blackjack and Its Analysis 1.2 Rules, Procedures and Terminology 2 Playing the Hand 2.1 Basic Strategy 2.1.1 Expected Return with Variant Rules and Procedures 2.1.2 Expected Return vs. Return on Investment 2.2 Composition-Dependent Play 3 Tracking the Cards 3.1 Linear Counts 3.2 Choosing a Counting Vector 3.3 Unbalanced Counting Vectors 3.4 Relating the True Count to the Expected Return 4 Betting 4.1 Yield, Risk, and Optimal Bet Strategies 4.11 Bet size in relation to true count 4.12 Other criteria 4.2 Betting Proportional to Current Capital 4.3 Multiple Hands 4.4 Back-Counting and Table-Hopping 5 Playing the Hand When the Count and Bet Vary 5.1 Play Strategies that Vary with the Count 5.1.1 Reconsidering the Counting Vector 5.1.2 Count Dependence of the Play Parameters 5.1.3 The Insurance Bet 5.2 Counter Basic Strategy for the Variable Bettor 6 Synthesis and Observations 6.1 A Practical, Nearly Optimal Strategy 6.2 Blackjack as a Recreation vs. a Profession Part II 7 Play Strategies 7.1 Basic Strategy, Large Number of Decks 7.1.1 Analytical Framework 7.1.2 Expected Player Return 7.1.3 Frequency of Tied Hands 7.1.4 Multiple Simultaneous Hands: Return, Variance, and Covariance 7.1.5 Expected Number of Cards Used per Round 7.2 Basic Strategy, Small Number of Decks 7.2.1 Analytical Framework 7.2.2 Expected Return, and Optimal Basic Strategy, vs. Number of Decks 7.2.3 Surrender; Insurance 7.3 Play Parameters Dependent on Identities of Initial Cards 7.3.1 Comparison with Previous Authorities 8 Card Counting 8.1 Analytical Framework 8.1.1 Asymptotic Distribution 8.1.2 Expected Return; Invariance Theorem 8.1.3 Hermite Series 8.2 Expected Return at Nonzero Depth 8.3 Optimizing the Counting Vectors 8.4 Optimizing the Counting Vectors: Many-Cards Limit 8.5 Computation of the Derivatives of the Expected Return 8.6 Unbalanced Counts Appendix 8.A Asymptotic Distribution of Card Likelihoods Appendix 8.B Eigenmodes 9 Bet Strategies 9.1 Risk and Capitalization 9.1.1 Risk in a Game with Fixed Return 9.1.2 Optimal Betting When Return Fluctuates: Expected Capital and Risk 9.1.3 Connections with Finance 9.1.4 Distribution of Capital 9.1.5 Properties of the Risk and Expected Capital Expressions 9.1.6 Optimal Betting When Return Fluctuates: Bet Strategy 9.1.7 Yield When the Bet Size Is Discrete; Wong Benchmark Betting 9.2 Betting Proportional to Current Capital 9.2.1 Mixed Additive and Multiplicative Betting 9.3 Betting When Playing Multiple Simultaneous Hands 9.4 Back-Counting and Table-Hopping 9.4.1 Entry 9.4.2 Entry and Exit 9.4.3 Entry and Departure 9.4.4 Entry, Exit, and Departure Appendix 9.A Distribution of Player’s Capital, Asymptotically for Large N Appendix 9.B The Chain Rule Convolution 10 Play Strategies with Card Counting 10.1 Count-Dependent Playing Strategy 10.1.1 Counting Vector Optimal for Play Variation Alone 10.1.2 Single Counting Vector Optimal for Bet and Play Together 10.1.3 Two Distinct Counting Vectors 10.1.4 Insurance with Variable Betting 10.2 Counter Basic Strategy References Index of Terms
Erscheint lt. Verlag | 20.7.2018 |
---|---|
Zusatzinfo | XX, 150 p. 23 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften | |
Technik | |
Wirtschaft | |
Schlagworte | Blackjack • Card Counting • casino games • Composition-Dependent Play • Computation of the Derivatives of the Expected Return • Counting Vectors • Derivation • Linear Counts • Mixed Additive Betting • Multiple Hands • Multiplicative Betting • Optimal Bet Strategies • Parameter • Play Strategies |
ISBN-10 | 3-319-91385-9 / 3319913859 |
ISBN-13 | 978-3-319-91385-8 / 9783319913858 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich