Materials Handbook (eBook)
CXXXVIII, 2254 Seiten
Springer International Publishing (Verlag)
978-3-319-38925-7 (ISBN)
The unique and practical Materials Handbook (third edition) provides quick and easy access to the physical and chemical properties of very many classes of materials. Its coverage has been expanded to include whole new families of materials such as minor metals, ferroalloys, nuclear materials, food, natural oils, fats, resins, and waxes. Many of the existing families-notably the metals, gases, liquids, minerals, rocks, soils, polymers, and fuels-are broadened and refined with new material and up-to-date information. Several of the larger tables of data are expanded and new ones added. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, each of twenty classes of materials receives attention in its own chapter. The health and safety issues connected with the useand handling of industrial materials are included.
Detailed appendices provide additional information on subjects as diverse as crystallography, spectroscopy, thermochemical data, analytical chemistry, corrosion resistance, and economic data for industrial and hazardous materials. Specific further reading sections and a general bibliography round out this comprehensive guide. The index and tabular format of the book makes light work of extracting what the reader needs to know from the wealth of factual information within these covers.
Dr. François Cardarelli has spent many years compiling and editing materials data. His professional expertise and experience combine to make this handbook an indispensable reference tool for scientists and engineers working in numerous fields ranging from chemical to nuclear engineering. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, materials are classified as follows.
- ferrous metals and their alloys;
- ferroalloys;
- common nonferrous metals;
- less common metals;
- minor metals;
- semiconductors and superconductors;
- magnetic materials;
- insulators and dielectrics;
- miscellaneous electrical materials;
- ceramics, refractories and glasses;
- polymers and elastomers;
- minerals, ores and gemstones;
- rocks and meteorites; soils and fertilizers;
- construction materials;
- timbers and woods;
- fuels, propellants and explosives;
- composite materials;
- gases;
- liquids;
- food, oils, resin and waxes;
- nuclear materials.
- food materials
François Cardarelli has had wide-ranging commercial and industrial experience of materials, commodities and processes:
- at CNRS in Paris he designed and used electrochemical sensors for pollution control;
- as a research scientist at Électricité de France he helped to invent methods of preparation of industrial titanium and tantalum electrodes;
- as a registered professional consultant in Toulouse, he solved problems in electrochemical engineering, the selection of electrode materials, corrosion and high-temperature operation;
- at the Avestor Corporation, he worked as an industrial electrochemist and materials expert in charge of strategic raw materials, scientific and technical support for lithium processing and, as Battery Product Leader, in charge of lithium polymer batteries for electric vehicles, down-hole drilling anf telecommunications he defined battery requirements and specifications and invented pyrometallurgical and hydrometallurgical processing for spent lithium batteries;
- at Rio Tinto Iron and Titanium, he was principal chemist for Materials at Sorel-Tracy in Québec dealing with valorization processes for industrial residues and refractory benchmarking. He invented two processes for electrowinning of titanium from slags and the electrolysis of metallic iron and regeneration of chlorine from metal chloride wastes.
- at the Material and Electrochemical Research (MER) Corp., Tucson (Arizona, USA) he was principal electrochemist working on the electrowinning of titanium metal powder from composite anodes and other materials-related projects.
- following a period as Manager of Recycling at 5NPlus Inc in Saint-Laurent Québec, since 2010, he has been President and owner of the company Electrochem Technologies & Materials Inc., based in Montreal (Quebec), Canada, manufacturing industrial electrodes, producing niobium, tantalum, and tungsten fine chemicals from industrial by-products and concentrates, inventing, developing, patenting and commercializing novel electrochemical and chemical technologies for electrowinning iron and iron-rich alloys from industrial wastes and effluents, and recycling rare earth oxides from spent fluorescent lamps.
François Cardarelli has had wide-ranging commercial and industrial experience of materials, commodities and processes: at CNRS in Paris he designed and used electrochemical sensors for pollution control;as a research scientist at Électricité de France he helped to invent methods of preparation of industrial titanium and tantalum electrodes;as a registered professional consultant in Toulouse, he solved problems in electrochemical engineering, the selection of electrode materials, corrosion and high-temperature operation;at the Avestor Corporation, he worked as an industrial electrochemist and materials expert in charge of strategic raw materials, scientific and technical support for lithium processing and, as Battery Product Leader, in charge of lithium polymer batteries for electric vehicles, down-hole drilling anf telecommunications he defined battery requirements and specifications and invented pyrometallurgical and hydrometallurgical processing for spent lithium batteries;at Rio Tinto Iron and Titanium, he was principal chemist for Materials at Sorel-Tracy in Québec dealing with valorization processes for industrial residues and refractory benchmarking. He invented two processes for electrowinning of titanium from slags and the electrolysis of metallic iron and regeneration of chlorine from metal chloride wastes.at the Material and Electrochemical Research (MER) Corp., Tucson (Arizona, USA) he was principal electrochemist working on the electrowinning of titanium metal powder from composite anodes and other materials-related projects.following a period as Manager of Recycling at 5NPlus Inc in Saint-Laurent Québec, since 2010, he has been President and owner of the company Electrochem Technologies & Materials Inc., based in Montreal (Quebec), Canada, manufacturing industrial electrodes, producing niobium, tantalum, and tungsten fine chemicals from industrial by-products and concentrates, inventing, developing, patenting and commercializing novel electrochemical and chemical technologies for electrowinning iron and iron-rich alloys from industrial wastes and effluents, and recycling rare earth oxides from spent fluorescent lamps. Doctor Cardarelli is also the author of Encyclopaedia of Scientific Units, Weights and Measures for Springer (ISBN: 1-85233-682-X).
Introduction 6
Author Biography 8
Acknowledgements 10
Units Policy 11
Contents 12
List of Figures 48
List of Tables 51
1 Properties of Materials 68
1.1 Physical Properties 69
1.1.1 Mass Density 69
1.1.2 Theoretical Density or X-ray Density of Solids 69
1.1.3 Apparent, Bulk, and Tap Densities 70
1.1.4 Specific Weight 70
1.1.5 Specific Gravity 70
1.1.6 Buoyancy and Archimedes’ Principle 71
1.1.7 Pycnometers for Solids 72
1.1.8 Density of Mixtures 73
1.2 Mechanical Properties 74
1.2.1 Stress and Pressure 74
1.2.2 Strain 75
1.2.3 Elastic Moduli and Hooke’s Law 75
1.2.4 The Stress–Strain Curve 77
1.2.5 Strain Hardening Exponent 79
1.2.6 Hardness 80
1.2.7 Resilience and Modulus of Resilience 80
1.2.8 Toughness 85
1.2.9 Maximum Allowable Stress 85
1.2.10 Fracture Toughness 86
1.2.11 Brittleness Indices 87
1.2.12 Grindability Index 89
1.2.13 Abrasion Index 91
1.2.14 Flow Properties and Angle of Repose of Particulate Solids 92
1.2.15 Creep 97
1.2.16 Ductile–Brittle Transition 98
1.2.17 Fatigue 98
1.2.18 Tribological and Lubricating Properties of Solids 99
1.2.19 Ashby’s Mechanical Performance Indices 100
1.2.20 Order of Magnitude of Mechanical Properties of Solid Materials 100
1.3 Acoustical Properties 101
1.3.1 Velocity of Sound in Materials 101
1.3.2 Sound Intensity 104
1.3.3 Attenuation of Sound at a Given Distance from a Source 104
1.3.4 Damping Capacity of Solids and Loss Factor 105
1.4 Thermal Properties 106
1.4.1 Molar and Specific Heat Capacities 106
1.4.2 Coefficients of Thermal Expansion 107
1.4.3 Volume Expansion on Melting 108
1.4.4 Thermal Shock Resistance 108
1.4.5 Heat Transfer Processes 109
1.4.6 Thermal Conductivity 109
1.4.7 Thermal Diffusivity 110
1.4.8 Thermal Radiation 111
1.4.9 Black Body, and Spectral Emissivity 111
1.4.10 Variations of Emissivity 112
1.4.11 Monochromatic Emissive Power 112
1.4.12 Stefan–Boltzmann Law 112
1.4.13 Irradiance, Emissive Power, and Kirchhoff’s Law 112
1.4.14 Wien’s Law 113
1.4.15 Solar Irradiance and Solar Constant 113
1.4.16 Absolute and Relative Air Mass 114
1.4.17 Zenithal Distance, and Inclination 114
1.4.18 Solar Spectrum and Spectral Solar Irradiance 116
1.4.19 Solar Emissivities and Albedo 117
1.4.20 Concentration of Sunlight 117
1.4.21 Solar Energy Conversion Processes 118
1.4.22 Temperature and Latent Enthalpies of Fusion, Vaporization, and Sublimation 119
1.4.23 Newton’s Law of Cooling and Newton’s Law for the Cooling Rate 121
1.4.24 Order of Magnitude of Thermophysical Properties of Materials 122
1.5 Optical Properties 125
1.5.1 Index of Refraction 125
1.5.2 Total Reflection and Critical Angle 126
1.5.3 Specific and Molar Refraction 127
1.5.4 Molar Refraction of Mixtures 127
1.5.5 Refractivity 128
1.5.6 Dispersion 128
1.5.7 Coefficient of Dispersion 128
1.5.8 Abbe Number 129
1.5.9 Temperature Dependence of the Refractive Index 129
1.5.10 Anisotropic Materials 129
1.5.11 Birefringence 130
1.5.12 Albedo and Reflective Index 130
1.5.13 Calculation of Refractive Index by Double Linear Interpolation 131
1.5.14 Circular Dichroism and Biot’s Law 131
1.5.15 Electromagnetic Radiation Spectrum 132
1.5.16 Order of Magnitude of Optical Properties of Transparent Materials 133
1.5.17 Macroscopic Absorption of Light 133
1.5.18 Microscopic Absorption and Emission Processes 136
1.5.19 Einstein Coefficients 138
1.5.20 Luminescence 141
1.6 Other Properties 143
1.6.1 Biocompatibility 143
1.6.2 Electronegativity 144
1.6.3 Chemical Abstract Registry Number 147
1.7 Dimensionless Analysis 147
1.7.1 The Vashy–Buckingham ? theorem 147
1.7.2 The Rayleigh Method 149
1.7.3 Dimensionless Numbers 150
1.8 Fundamental Constants 157
1.9 Conversion Factors 159
1.10 Further Reading 162
1.10.1 Mathematics and Statistics 162
1.10.2 Units and Conversion Tables 163
1.10.3 Physics 163
1.10.4 Physical Chemistry 164
1.10.5 Engineering Fundamentals 164
1.10.6 General Handbooks 164
1.10.7 Mechanical Properties 165
1.10.8 Electrical Properties 165
1.10.9 Thermal Properties 165
1.10.10 Metallurgy 165
1.10.11 Materials Science 166
2 Ferrous Metals and Their Alloys 167
2.1 Iron and Steels 168
2.1.1 Description and General Properties 168
2.1.2 Phase Transitions and Allotropism of Iron 174
2.1.3 Metallographic Etchants for Iron and Steels 176
2.1.4 History 176
2.1.5 Natural Occurrence, Minerals, and Ores 177
2.1.6 Major Steel-Producing Countries and Producers 180
2.1.7 Mining and Mineral Dressing 180
2.1.8 Ironmaking and Steelmaking 183
2.1.9 Pure Iron Grades 186
2.1.10 The Iron–Carbon and Iron–Cementite Systems 186
2.1.11 Cast Irons 191
2.1.12 Carbon Steels (C–Mn Steels) 193
2.1.13 Stainless Steels 213
2.1.14 High-Strength Low-Alloy Steels 229
2.1.15 Ultrahigh-Strength Steels 234
2.1.16 Tool and Machining Steels 236
2.1.17 Maraging Steels 239
2.1.18 Iron-Based Superalloys 244
2.1.19 Iron Powders 246
2.1.20 Further Reading 247
2.2 Nickel and Nickel Alloys 248
2.2.1 Description and General Properties 248
2.2.2 History 249
2.2.3 Natural Occurrence, Minerals, and Ores 249
2.2.4 Processing and Industrial Preparation 251
2.2.5 Nickel Alloys 252
2.2.6 Nickel Alloys and Superalloys 256
2.2.7 Nickel–Titanium Shape Memory Alloys 256
2.2.8 Major Nickel Producers 268
2.3 Cobalt and Cobalt Alloys 268
2.3.1 Description and General Properties 268
2.3.2 History 270
2.3.3 Natural Occurrence, Minerals, and Ores 270
2.3.4 Processing and Industrial Preparation 271
2.3.5 Properties of Cobalt Alloys and Superalloys 272
2.3.6 Corrosion Resistance of Stellite Alloys 273
2.3.7 Industrial Applications and Uses 276
2.3.8 Major Cobalt Producers 276
2.4 Manganese and Manganese-Based Alloys 276
2.4.1 Description and General Properties 276
2.4.2 History 277
2.4.3 Natural Occurrence, Minerals, and Ores 277
2.4.4 Processing and Industrial Preparation 281
2.4.5 Industrial Applications and Uses 285
2.4.6 Major Manganese Producers 286
2.5 Ferroalloys 286
2.5.1 Introduction 286
2.5.2 Ferroalloy Types and Grades 288
2.5.3 Industrial Production Processes 288
2.5.4 Physical Properties and Chemical Reactivity 288
2.5.5 Major Producing Countries and Producers 288
2.5.6 Industrial Applications and Uses 288
2.5.7 Prices 301
2.5.8 Carbon and Graphite Electrodes 301
2.5.9 Electrotechnology of Arc Smelting 304
2.5.10 Reactance Calculations 311
2.5.11 Further Reading 314
3 Common Nonferrous Metals 315
3.1 Introduction 316
3.2 Aluminum and Aluminum Alloys 316
3.2.1 Description and General Properties 316
3.2.2 History 322
3.2.3 Natural Occurrence, Minerals, and Ores 323
3.2.4 Processing and Industrial Preparation 324
3.2.5 Properties of Aluminum Alloys 329
3.2.6 Industrial Applications and Uses 331
3.2.7 Major Aluminum Producers and Dross Recyclers 337
3.2.8 Further Reading 338
3.3 Copper and Copper Alloys 339
3.3.1 Description and General Properties 339
3.3.2 Natural Occurrence, Minerals, and Ores 340
3.3.3 Processing and Industrial Preparation 341
3.3.4 Properties of Copper Alloys 342
3.3.5 Major Copper Producers 350
3.3.6 Further Reading 350
3.4 Zinc and Zinc Alloys 350
3.4.1 Description and General Properties 350
3.4.2 History 352
3.4.3 Natural Occurrence, Minerals, and Ores 352
3.4.4 Processing and Industrial Preparation 352
3.4.5 Industrial Applications and Uses 359
3.4.6 Properties of Zinc Alloys 361
3.5 Lead and Lead Alloys 361
3.5.1 Description and General Properties 361
3.5.2 History 365
3.5.3 Natural Occurrence, Minerals, and Ores 365
3.5.4 Beneficiation and Mineral Dressing 365
3.5.5 Processing and Industrial Preparation 365
3.5.6 Industrial Applications and Uses 367
3.5.7 Properties of Lead Alloys 367
3.5.8 Further Reading 370
3.6 Tin and Tin Alloys 370
3.6.1 Description and General Properties 370
3.6.2 History 371
3.6.3 Natural Occurrence, Minerals, and Ores 372
3.6.4 Processing and Industrial Preparation 373
3.6.5 Industrial Applications and Uses 375
3.6.6 Properties of Tin Alloys 375
3.7 Low Melting Point or Fusible Alloys 375
3.7.1 Further Reading 375
4 Less Common Nonferrous Metals 382
4.1 Alkali Metals 383
4.1.1 Lithium 383
4.1.2 Sodium 405
4.1.3 Potassium 411
4.1.4 Rubidium 413
4.1.5 Cesium 415
4.1.6 Francium 417
4.2 Alkaline Earth Metals 417
4.2.1 Beryllium 418
4.2.2 Magnesium and Magnesium Alloys 426
4.2.3 Calcium 433
4.2.4 Strontium 443
4.2.5 Barium 444
4.2.6 Radium 445
4.3 Refractory Metals 446
4.3.1 General Overview 446
4.3.2 Titanium and Titanium Alloys 459
4.3.3 Zirconium and Zirconium Alloys 522
4.3.4 Hafnium and Hafnium Alloys 533
4.3.5 Vanadium and Vanadium Alloys 535
4.3.6 Niobium and Niobium Alloys 543
4.3.7 Tantalum and Tantalum Alloys 555
4.3.8 Chromium and Chromium Alloys 578
4.3.9 Molybdenum and Molybdenum Alloys 585
4.3.10 Tungsten and Tungsten Alloys 594
4.3.11 Rhenium and Rhenium Alloys 601
4.4 Noble and Precious Metals 609
4.4.1 Silver and Silver Alloys 613
4.4.2 Gold and Gold Alloys 617
4.5 Platinum Group Metals 625
4.5.1 General Overview 625
4.5.2 Natural Occurrence, Chief Minerals, and Ores 628
4.5.3 Common Physical and Chemical Properties 629
4.5.4 The Six Platinum Group Metals 629
4.5.5 Platinum Alloys 640
4.5.6 Corrosion Resistance of Platinum Group Metals 640
4.5.7 Further Reading 645
4.6 Rare Earth Metals 645
4.6.1 Description and General Properties 645
4.6.2 History 648
4.6.3 Natural Occurrence, Minerals, and Ores 654
4.6.4 Processing and Industrial Preparation 658
4.6.5 Industrial Applications and Uses 663
4.6.6 Recycling Rare Earths from Phosphors 665
4.6.7 Major Producers and Suppliers of Rare Earths 670
4.6.8 Further Reading 670
4.6.9 Scandium 670
4.7 Uranides 673
4.7.1 Uranium 673
4.7.2 Thorium 689
4.7.3 Plutonium 695
4.8 Minor Metals 697
4.8.1 Introduction 697
4.8.2 Cadmium 706
4.8.3 Mercury 711
4.8.4 Gallium 718
4.8.5 Indium 724
4.8.6 Thallium 729
4.8.7 Selenium 734
4.8.8 Tellurium 741
4.8.9 Arsenic 747
4.8.10 Antimony 752
4.8.11 Bismuth 756
5 Semiconductors 761
5.1 Band Theory of Bonding in Crystalline Solids 762
5.2 Electrical Classification of Solids 762
5.3 Semiconductor Classes 764
5.3.1 Intrinsic or Elemental Semiconductors 764
5.3.2 Doped Extrinsic Semiconductors 764
5.3.3 Compound Semiconductors 765
5.3.4 Grimm–Sommerfeld Rule 766
5.4 Concentrations of Charge Carriers 766
5.5 Transport Properties 768
5.5.1 Electromigration 768
5.5.2 Diffusion 769
5.5.3 Hall Effect 769
5.6 Physical Properties of Semiconductors 770
5.7 Industrial Applications and Uses 770
5.8 Common Semiconductors 770
5.8.1 Silicon 770
5.8.2 Germanium 779
5.8.3 Boron 781
5.8.4 Other Semiconductors 782
5.9 Semiconductor Wafer Processing 783
5.9.1 Monocrystal Growth 783
5.9.2 Wafer Production 784
5.10 The p–n Junction 786
5.11 Further Reading 787
6 Superconductors 788
6.1 Description and General Properties 789
6.2 Superconductor Types 790
6.2.1 Type I Superconductors 790
6.2.2 Type II Superconductors 790
6.2.3 High-critical-temperature Superconductors 793
6.2.4 Organic Superconductors 793
6.3 Basic Theory 794
6.4 Meissner–Ochsenfeld Effect 795
6.5 History 796
6.6 Industrial Applications and Uses 797
6.7 Further Reading 798
7 Magnetic Materials 799
7.1 Magnetic Physical Quantities 800
7.1.1 Magnetic Field Strength and Magnetomotive Force 800
7.1.2 Magnetic Flux Density and Magnetic Induction 801
7.1.3 Magnetic Flux 802
7.1.4 Magnetic Dipole Moment 803
7.1.5 Magnetizability, Magnetization, and Magnetic Susceptibility 804
7.1.6 Magnetic Force Exerted on a Material 806
7.1.7 Magnetic Force Exerted by Magnets 807
7.1.8 Magnetic Energy Density Stored 807
7.1.9 Electromagnet Calculations and Air Gaps 807
7.1.10 Magnetoresistance 809
7.1.11 Magnetostriction 809
7.1.12 Magnetocaloric Effect 810
7.1.13 SI and CGS Units Used in Electromagnetism 813
7.2 Classification of Magnetic Materials 813
7.2.1 Diamagnetic Materials 815
7.2.2 Paramagnetic Materials 817
7.2.3 Ferromagnetic Materials 817
7.2.4 Antiferromagnetic Materials 818
7.2.5 Ferrimagnetic Materials 821
7.3 Ferromagnetic Materials 821
7.3.1 B–H Magnetization Curve and Hysteresis Loop 821
7.3.2 Eddy-Current Losses 823
7.3.3 Induction Heating 824
7.3.4 Soft Ferromagnetic Materials 824
7.3.5 Hard Magnetic Materials 825
7.3.6 Magnetic Shielding and Materials Selection 829
7.4 Industrial Applications of Magnetic Materials 835
7.5 Further Reading 835
8 Insulators and Dielectrics 838
8.1 Physical Quantities of Dielectrics 839
8.1.1 Permittivity of Vacuum 839
8.1.2 Permittivity of a Medium 839
8.1.3 Relative Permittivity and Dielectric Constant 839
8.1.4 Capacitance 840
8.1.5 Temperature Coefficient of Capacitance 840
8.1.6 Charging and Discharging a Capacitor 840
8.1.7 Capacitance of a Parallel-Electrode Capacitor 841
8.1.8 Capacitance of Other Capacitor Geometries 841
8.1.9 Electrostatic Energy Stored in a Capacitor 841
8.1.10 Electric Field Strength 842
8.1.11 Electric Flux Density 842
8.1.12 Microscopic Electric Dipole Moment 842
8.1.13 Polarizability 843
8.1.14 Macroscopic Electric Dipole Moment 843
8.1.15 Polarization 843
8.1.16 Electric Susceptibility 844
8.1.17 Dielectric Breakdown Voltage 844
8.1.18 Dielectric Absorption 845
8.1.19 Dielectric Losses 845
8.1.20 Loss Tangent or Dissipation Factor 845
8.1.21 Dielectric Heating 846
8.2 Physical Properties of Insulators 846
8.2.1 Insulation Resistance 846
8.2.2 Volume Electrical Resistivity 847
8.2.3 Temperature Coefficient of Electrical Resistivity 847
8.2.4 Surface Electrical Resistivity 848
8.2.5 Leakage Current 849
8.2.6 SI and CGS Units Used in Electricity 850
8.3 Dielectric Behavior 850
8.3.1 Electronic Polarization 850
8.3.2 Ionic Polarization 850
8.3.3 Dipole Orientation 852
8.3.4 Space Charge Polarization 853
8.3.5 Effect of Frequency on Polarization 853
8.3.6 Frequency Dependence of the Dielectric Losses 853
8.4 Dielectric Breakdown Mechanisms 854
8.4.1 Electronic Breakdown or Corona Mechanism 854
8.4.2 Thermal Discharge or Thermal Mechanism 854
8.4.3 Internal Discharge or Intrinsic Mechanism 855
8.5 Electrostriction 855
8.6 Piezoelectricity 855
8.7 Ferroelectrics 855
8.8 Aging of Ferroelectrics 857
8.9 Classification of Industrial Dielectrics 861
8.9.1 Class I Dielectrics or Linear Dielectrics 861
8.9.2 Class II Dielectrics or Ferroelectrics 861
8.10 Selected Properties of Insulators and Dielectric Materials 862
8.11 Faraday’s Triboelectric Series 866
8.12 Further Reading 866
9 Miscellaneous Electrical Materials 868
9.1 Thermocouple Materials 869
9.1.1 The Seebeck Effect 869
9.1.2 Thermocouple 871
9.1.3 Properties of Common Thermocouple Materials 871
9.2 Resistors and Thermistors 872
9.2.1 Electrical Resistivity 872
9.2.2 Temperature Coefficient of Electrical Resistivity 875
9.3 Electron-Emitting Materials 877
9.4 Photocathode Materials 882
9.5 Secondary Emission 882
9.6 Electrolytes 882
9.7 Electrode Materials 885
9.7.1 Electrode Materials for Batteries and Fuel Cells 885
9.7.2 Intercalation Compounds 885
9.7.3 Electrode Materials for Electrolytic Cells 891
9.7.4 Electrodes for Corrosion Protection and Control 922
9.7.5 Electrode Suppliers and Manufacturers 923
9.8 Electrochemical Galvanic Series 930
9.9 Selected Standard Electrode Potentials 930
9.10 Reference Electrodes Potentials 930
9.11 Ampacity or Maximum Carrying Current 937
9.11.1 Maximum Frequency for Penetration 938
9.11.2 Maximum Current and Cable Temperature 939
9.11.3 Fusing Current 942
10 Ceramics, Refractories, and Glasses 944
10.1 Introduction and Definitions 945
10.2 Raw Materials for Ceramics, Refractories, and Glasses 945
10.2.1 Silica 945
10.2.2 Aluminosilicates 949
10.2.3 Bauxite and Aluminas 954
10.2.4 Limestone and Lime 963
10.2.5 Dolomite and Doloma 964
10.2.6 Magnesite and Magnesia 966
10.2.7 Titania 969
10.2.8 Zircon and Zirconia 973
10.2.9 Carbon and Graphite 978
10.2.10 Silicon Carbide 982
10.2.11 Properties of Raw Materials Used in Ceramics, Refractories, and Glasses 986
10.3 Traditional Ceramics 986
10.4 Refractories 987
10.4.1 Classification of Refractories 988
10.4.2 Properties of Refractories 989
10.4.3 Major Refractory Manufacturers 992
10.5 Advanced Ceramics 992
10.5.1 Silicon Nitride 992
10.5.2 Silicon Aluminum Oxynitride 994
10.5.3 Boron Carbide 995
10.5.4 Boron Nitride 996
10.5.5 Titanium Diboride 997
10.5.6 Tungsten Carbides and Hardmetal 998
10.5.7 Ultrahigh-Temperature Refractory Materials 1000
10.5.8 Practical Data for Ceramists and Refractory Engineers 1001
10.6 Standards for Testing Refractories 1001
10.7 Properties of Pure Ceramics (Borides, Carbides, Nitrides, Silicides, and Oxides) 1008
10.8 Further Reading 1008
10.8.1 Traditional and Advanced Ceramics 1008
10.8.2 Refractories 1049
10.9 Glasses 1049
10.9.1 Definitions 1049
10.9.2 Physical Properties of Glasses 1050
10.9.3 Glassmaking Processes 1050
10.9.4 Further Reading 1058
10.10 Proppants 1058
10.10.1 Fracturing Techniques in Oil Well Production 1058
10.10.2 Proppant and Frac Fluid Selection Criteria 1060
10.10.3 Further Reading 1073
11 Polymers and Elastomers 1074
11.1 Fundamentals and Definitions 1075
11.1.1 Definitions 1075
11.1.2 Additives and Fillers 1075
11.1.3 Polymerization and Polycondensation 1077
11.2 Properties and Characteristics of Polymers 1078
11.2.1 Molar Mass and Relative Molar Mass 1078
11.2.2 Average Degree of Polymerization 1078
11.2.3 Number-, Mass- and z-Average Molar Masses 1079
11.2.4 Glass Transition Temperature 1080
11.2.5 Structure of Polymers 1081
11.3 Classification of Plastics and Elastomers 1081
11.4 Thermoplastics 1081
11.4.1 Naturally Occurring Resins 1081
11.4.2 Cellulosics 1083
11.4.3 Casein Plastics 1085
11.4.4 Coumarone-Indene Plastics 1086
11.4.5 Polyolefins or Ethenic Polymers 1086
11.4.6 Polymethylpentene 1088
11.4.7 Polyvinyl Plastics 1089
11.4.8 Polyvinylidene Plastics 1090
11.4.9 Styrenics 1090
11.4.10 Fluorinated Polyolefins (Fluorocarbons) 1091
11.4.11 Acrylics and Polymethyl Methacrylate 1093
11.4.12 Polyamides 1094
11.4.13 Polyaramids 1094
11.4.14 Polyimides 1095
11.4.15 Polyacetals 1095
11.4.16 Polycarbonates 1095
11.4.17 Polysulfone 1096
11.4.18 Polyphenylene Oxide 1096
11.4.19 Polyphenylene Sulfide 1096
11.4.20 Polybutylene Terephthalate 1097
11.4.21 Polyethylene Terephthalate 1097
11.4.22 Polydiallyl Phthalate 1097
11.5 Thermosets 1097
11.5.1 Aminoplastics 1097
11.5.2 Phenolics 1098
11.5.3 Acrylonitrile-Butadiene-Styrene 1099
11.5.4 Polyurethanes 1099
11.5.5 Furan Plastics 1099
11.5.6 Epoxy Resins 1100
11.6 Rubbers and Elastomers 1100
11.6.1 Natural Rubber 1100
11.6.2 trans-Polyisoprene Rubber 1101
11.6.3 Polybutadiene Rubber 1101
11.6.4 Styrene-Butadiene Rubber 1101
11.6.5 Nitrile Rubber 1102
11.6.6 Butyl Rubber 1102
11.6.7 Chloroprene Rubber 1102
11.6.8 Chlorosulfonated Polyethylene 1103
11.6.9 Polysulfide Rubber 1103
11.6.10 Ethylene-Propylene Rubbers 1103
11.6.11 Silicone Rubber 1103
11.6.12 Fluoroelastomers 1104
11.7 Physical Properties of Polymers 1105
11.8 Gas Permeability of Polymers 1130
11.9 Chemical Resistance of Polymers 1130
11.10 International Union of Pure and Applied Chemistry Acronyms of Polymers and Elastomers 1146
11.11 Plastics Identification Chart 1146
11.12 Economic Data on Polymers and Related Chemical Intermediates 1146
11.12.1 Average Prices of Polymers 1146
11.12.2 Production Capacities, Prices, and Major Producers of Polymers and Chemical Intermediates 1146
11.13 Further Reading 1146
12 Minerals, Ores, and Gemstones 1154
12.1 Definitions 1155
12.2 Mineralogical, Physical, and Chemical Properties 1161
12.2.1 Mineral Names 1161
12.2.2 Chemical Formula and Theoretical Chemical Composition 1162
12.2.3 Crystallographic Properties 1162
12.2.4 Habit or Crystal Form 1163
12.2.5 Color 1164
12.2.6 Diaphaneity or Transmission of Light 1165
12.2.7 Luster 1165
12.2.8 Cleavage and Parting 1165
12.2.9 Fracture 1166
12.2.10 Streak 1166
12.2.11 Tenacity 1166
12.2.12 Density and Specific Gravity 1167
12.2.13 Mohs Hardness 1167
12.2.14 Optical Properties 1168
12.2.15 Static Electricity and Magnetism 1172
12.2.16 Luminescence 1172
12.2.17 Piezoelectricity and Pyroelectricity 1172
12.2.18 Play of Colors and Chatoyancy 1172
12.2.19 Radioactivity 1173
12.2.20 Miscellaneous Properties 1173
12.2.21 Chemical Reactivity 1173
12.2.22 Pyrognostic Tests or Fire Assays 1173
12.2.23 Heavy-Media or Sink-Float Separations in Mineralogy 1182
12.3 Strunz Classification of Minerals 1184
12.4 Dana’s Classification of Minerals 1184
12.5 Gemstones 1184
12.5.1 Diamond 1188
12.5.2 Beryl Gem Varieties 1197
12.5.3 Corundum Gem Varieties 1201
12.5.4 Synthetic Gemstones 1204
12.6 International Mineralogical Association (iMA) Acronyms of Rock-Forming Minerals 1207
12.7 Mineral and Gemstone Properties Table 1207
12.8 Mineral Synonyms 1354
12.9 Further Reading 1366
12.9.1 Crystallography 1366
12.9.2 Optical Mineralogy 1367
12.9.3 Mineralogy 1368
12.9.4 Industrial Minerals 1370
12.9.5 Ores 1371
12.9.6 Gemstones 1372
12.9.7 Heavy Liquids and Mineral Dressing 1373
13 Rocks and Meteorites 1374
13.1 Introduction 1375
13.2 Structure of Earth’s Interior 1375
13.3 Different Types of Rocks 1379
13.4 Igneous Rocks 1380
13.4.1 Classification of Igneous Rocks 1381
13.4.2 Texture of Igneous Rocks 1384
13.4.3 Chemistry of Igneous Rocks 1386
13.4.4 General Classification of Igneous Rocks 1386
13.4.5 Vesicular and Pyroclastic Igneous Rocks 1395
13.4.6 CIPW Norm Calculations 1395
13.5 Sedimentary Rocks 1404
13.5.1 Sediments 1405
13.5.2 Residual Sedimentary Rocks 1406
13.5.3 Detritic or Clastic Sedimentary Rocks 1406
13.5.4 Chemical Sedimentary Rocks 1408
13.5.5 Biogenic Sedimentary Rocks 1408
13.5.6 Chemical Composition 1409
13.6 Metamorphic Rocks 1409
13.6.1 Classification of Metamorphic Rocks 1411
13.6.2 Metamorphic Grade 1414
13.6.3 Metamorphic Facies 1414
13.7 Ice 1414
13.8 Meteorites 1416
13.8.1 Definitions 1416
13.8.2 Modern Classification of Meteorites 1416
13.8.3 Tektites, Impactites, and Fulgurites 1423
13.9 Properties of Common Rocks 1428
13.10 Further Reading 1428
14 Soils and Fertilizers 1430
14.1 Introduction 1431
14.2 History 1431
14.3 Pedogenesis 1432
14.3.1 Weathering and Alteration of Minerals and Clay Formation 1432
14.3.2 Incorporation of Organic Matter 1433
14.3.3 Mass Transfer Between Horizons 1434
14.4 Soil Morphology 1435
14.4.1 Major Horizons 1435
14.4.2 Transitional Horizons 1435
14.4.3 Subdivisions of Master Horizons 1435
14.5 Soil Properties 1440
14.5.1 Horizon Boundaries 1440
14.5.2 Coloration of Soils 1441
14.5.3 Soil Texture 1442
14.5.4 Soil Structure 1446
14.5.5 Consistency 1449
14.5.6 Mass–Volume Relationships 1449
14.5.7 Roots 1451
14.5.8 Acidity (pH) and Effervescence 1451
14.6 Soil Taxonomy 1452
14.6.1 USDA Classification of Soils 1452
14.6.2 FAO Classification of Soils 1456
14.6.3 French Classification of Soils 1456
14.6.4 ASTM Civil Engineering Classification of Soils 1456
14.7 Soil Identification 1456
14.8 ISO and ASTM Standards 1468
14.9 Physical Properties of Common Soils 1471
14.10 Fertilizers 1471
14.10.1 Nitrogen Fertilizers 1473
14.10.2 Phosphorus Fertilizers 1475
14.10.3 Potassium Fertilizers 1475
14.10.4 Fertilizer Consumption Versus Crop and Bioethanol Yields 1475
14.10.5 Role of Micronutrients in Soils 1475
14.11 Further Reading 1479
15 Cements, Concrete, Building Stones, and Construction Materials 1482
15.1 Introduction 1483
15.1.1 Nonhydraulic Cements 1483
15.2 Portland Cement 1484
15.2.1 History 1484
15.2.2 Raw Materials for Portland Cement 1485
15.2.3 Processing of Portland Cement 1485
15.2.4 Portland Cement Chemistry 1486
15.2.5 Portland Cement Nomenclature 1489
15.3 Aggregates 1489
15.3.1 Coarse Aggregates 1492
15.3.2 Fine Aggregates 1492
15.4 Mineral Admixtures 1492
15.5 Mortars and Concrete 1493
15.5.1 Definitions 1493
15.5.2 Degradation Processes 1494
15.6 Ceramics for Construction 1495
15.7 Building Stones 1495
15.7.1 Limestones and Dolomites 1495
15.7.2 Sandstones 1495
15.7.3 Basalt 1496
15.7.4 Granite 1496
15.8 Properties of Soils for Building Foundations 1496
15.9 Further Reading 1499
16 Timbers and Woods 1501
16.1 General Description 1502
16.2 Properties of Woods 1504
16.2.1 Moisture Content 1504
16.2.2 Specific Gravity and Density 1504
16.2.3 Drying and Shrinkage 1505
16.2.4 Mechanical Properties 1506
16.2.5 Thermal Properties 1507
16.2.6 Electrical Properties 1508
16.2.7 Heating Values and Flammability 1509
16.2.8 Durability and Decay Resistance 1509
16.3 Properties of Hardwoods and Softwoods 1509
16.4 Applications 1523
16.5 Wood Performance in Various Corrosives 1523
16.6 Further Reading 1523
17 Fuels, Propellants, and Explosives 1525
17.1 Introduction and Classification 1526
17.2 Combustion Characteristics 1526
17.2.1 Enthalpy of Combustion 1526
17.3 Solid Fuels: Coals and Cokes 1531
17.4 Liquid Fuels 1534
17.5 Gaseous Fuels 1538
17.6 Prices of Common Fuels 1538
17.7 Propellants 1542
17.7.1 Liquid Propellants 1543
17.7.2 Solid Propellants 1545
17.8 Explosives 1546
17.9 Chemical Warfare Agents 1547
17.10 Further Reading 1555
17.10.1 Fuels and Combustion 1555
17.10.2 Propellants and Explosives 1556
17.10.3 Chemical Warfare Agents 1556
18 Composite Materials 1557
18.1 Definitions 1558
18.2 Properties of Composites 1558
18.2.1 Density 1559
18.2.2 Tensile Strength and Elastic Moduli 1561
18.2.3 Specific Heat Capacity 1562
18.2.4 Thermal Conductivity 1563
18.2.5 Thermal Expansion Coefficient 1563
18.3 Processes for Fabrication of Monofilaments 1563
18.4 Reinforcement Materials 1564
18.4.1 Glass Fibers 1564
18.4.2 Boron Fibers 1567
18.4.3 Carbon Fibers 1568
18.4.4 Polyethylene Fibers 1569
18.4.5 Polyaramid Fibers 1569
18.4.6 Ceramic Oxide Fibers 1569
18.4.7 Silicon Carbide Fibers 1569
18.5 Polymer Matrix Composites (PMCs) 1570
18.6 Metal Matrix Composites (MMCs) 1571
18.7 Ceramic Matrix Composites (CMCs) 1575
18.8 Carbon–Carbon Composites 1575
18.9 Further Reading 1577
19 Gases 1578
19.1 Properties of Gases 1579
19.1.1 Pressure 1579
19.1.2 The Boyle–Mariotte Law 1580
19.1.3 Charles’s and Gay-Lussac’s Law 1581
19.1.4 The Avogadro–Ampère Law 1581
19.1.5 Normal and Standard Conditions 1582
19.1.6 Equation of State of Ideal Gases 1582
19.1.7 Dalton’s Law of Partial Pressure 1583
19.1.8 Equations of State of Real Gases 1584
19.1.9 Density and Specific Gravity of Gases 1586
19.1.10 Barometric Equation 1588
19.1.11 Isobaric Coefficient of Cubic Expansion 1588
19.1.12 Compressibility Factor 1589
19.1.13 Isotherms of Real Gases and Critical Constants 1589
19.1.14 Critical Parameters 1590
19.1.15 The Principle of Corresponding States 1591
19.1.16 Microscopic Properties of Gas Molecules 1591
19.1.17 Molar and Specific Heat Capacities 1592
19.1.18 Dynamic and Kinematic Viscosities 1592
19.1.19 Solubility of Gases in Liquids 1593
19.1.20 Gas Permeability of Polymers 1595
19.1.21 Dielectric Properties of Gases, Permittivity, and Breakdown Voltage 1595
19.1.22 Psychrometry and Hygrometry 1598
19.1.23 Vapor Pressure 1599
19.1.24 Flammability of Gases and Vapors 1603
19.1.25 Toxicity of Gases and Threshold Limit Averages 1610
19.1.26 Effect of Oxygen Deficiency 1610
19.2 Mass Density of Dry Air 1612
19.3 Steam Tables 1615
19.4 Physicochemical Properties of Major Gases 1626
19.5 Monographs on Major Industrial Gases 1626
19.5.1 Air 1626
19.5.2 Nitrogen 1626
19.5.3 Oxygen 1645
19.5.4 Hydrogen 1648
19.5.5 Methane 1657
19.5.6 Carbon Monoxide 1658
19.5.7 Carbon Dioxide 1660
19.5.8 Helium and Noble Gases 1661
19.6 Halocarbons 1665
19.7 Hydrates of Gases and Clathrates 1666
19.8 Materials for Drying and Purifying Gases 1667
19.8.1 Drying Agents and Desiccants 1667
19.8.2 Molecular Sieves 1667
19.8.3 Getters and Scavengers 1668
19.9 Producers and Manufacturers of Major Industrial Gases 1674
19.10 Prices of Commercial Utility Gases 1674
19.11 Further Reading 1674
20 Liquids 1676
20.1 Properties of Liquids 1677
20.1.1 Density and Specific Gravity 1677
20.1.2 Hydrometer Scales 1677
20.1.3 Calculation of Mass Density by Double Linear Interpolation 1678
20.1.4 Dynamic and Kinematic Viscosities 1679
20.1.5 Classification of Fluids 1681
20.1.6 The Hagen–Poiseuille Equation and Pressure Losses 1681
20.1.7 Sedimentation and Free Settling 1684
20.1.8 Vapor Pressure 1686
20.1.9 Surface Tension, Wetting, and Capillarity 1686
20.1.10 Colligative Properties of Nonvolatile Solutes 1695
20.1.11 Flammability of Liquids 1698
20.2 Properties of the Most Common Liquids 1767
20.3 Monographs on Liquids 1767
20.3.1 Properties of Water and Heavy Water 1767
20.3.2 Mass Density of Pure Water Versus Temperature 1775
20.3.3 Chemical Composition and Physical Properties of Seawater 1775
20.3.4 Properties of Liquid Acids and Bases 1776
20.3.5 Colligative Properties of Aqueous Solutions 1776
20.3.6 Properties of Heavy Liquids (Heavy Media) 1839
20.4 Properties of Liquid Metals 1843
20.5 Properties of Pure Molten Salts 1843
20.6 Properties of Molten Salt Eutectic Mixtures 1843
20.7 Properties of Metal–Metal Halide Molten Mixtures 1843
20.8 Properties of Solutions of Alkali Metals in Liquid Ammonia 1851
20.9 Properties of Heat Transfer Fluids 1852
20.10 Colloidal and Dispersed Systems 1854
20.11 Further Reading 1854
21 Food Materials 1855
21.1 Introduction 1856
21.2 Nutrients 1856
21.2.1 Carbohydrates 1856
21.2.2 Amino Acids and Proteins 1864
21.2.3 Lipids: Fats and Oils 1869
21.2.4 Vitamins 1871
21.2.5 Minerals 1871
21.2.6 Essential elements 1873
21.2.7 Water 1873
21.3 Metabolism and Food Caloric Values 1873
21.3.1 Chemical Energy and Food Caloric Value 1875
21.3.2 Metabolic Activity 1875
21.4 Food Storage Temperature and Freezing Conditions 1876
21.5 Food Chart 1876
21.6 Natural Oils, Fats, Resins, and Waxes 1913
21.6.1 Definitions 1913
21.6.2 Selected Properties and Characteristics 1913
21.6.3 Properties of Natural Oils, Fats, Resins, and Waxes 1916
21.7 Animal and Vegetable Kingdoms 1916
21.8 Further Reading 1937
22 Nuclear Materials 1938
22.1 Atomic Nucleus and Nuclides 1939
22.2 Nucleus Stability 1941
22.2.1 Mass Default 1941
22.2.2 Binding Energy 1941
22.2.3 Binding Energy per Nucleon 1942
22.2.4 Mass Excess 1942
22.2.5 Packing Fraction 1943
22.2.6 Stable Nuclides 1944
22.3 Nuclear Models 1945
22.3.1 Liquid Drop Model and Semiempirical Mass Formula 1945
22.4 Radioactivity Modes 1948
22.4.1 Alpha Radiation 1949
22.4.2 Beta Minus Radiation 1951
22.4.3 Beta Plus Radiation 1953
22.4.4 Electron Capture 1955
22.4.5 Double Beta Emission 1957
22.4.6 Gamma Radiation and Internal Conversion 1957
22.4.7 Neutron and Proton Emissions 1957
22.4.8 Heavy Ion Radiation 1958
22.4.9 Fission 1958
22.4.10 Ségré Diagram 1959
22.5 Radioactivity 1959
22.5.1 Definitions 1959
22.5.2 Radioactive Decay Modes 1960
22.5.3 Radioactive Decay Constant 1960
22.5.4 Radioactive Period or Half-life 1961
22.5.5 Mean Life 1963
22.5.6 Activity 1963
22.5.7 Specific Activity 1965
22.5.8 Mixed Decay 1965
22.5.9 Branched Decay and Partial Activities 1966
22.5.10 Chain Decay 1968
22.5.11 Two-Body Chain 1968
22.5.12 Nonequilibrium (T2 > T1)
22.5.13 Transient Equilibrium (T1 > T2)
22.5.14 Secular Equilibrium (T1 > >
22.5.15 Three-Body Chain 1973
22.5.16 N-Body Chain and Bateman’s Equation 1975
22.5.17 Activities Decaying During Measurement 1975
22.5.18 Natural Radioactivity 1976
22.6 Nuclear Activation 1984
22.6.1 General Equation with no Existing Products 1984
22.6.2 General Equation with Existing Radionuclides Y* 1986
22.6.3 Nuclear Activation with Decay Chain 1986
22.6.4 Neutron Activation 1987
22.7 Radiation–Matter Interaction 1987
22.7.1 Charged Particles 1987
22.7.2 Electromagnetic Radiation, Photons 1992
22.7.3 Neutrons 2000
22.8 Radiolysis of Water 2000
22.8.1 Radiochemical Yield or G Value 2000
22.8.2 Radiolysis of Water 2000
22.8.3 Fricke’s Dosimeter 2001
22.9 Nuclear Radiation Dosimetry 2002
22.9.1 Absorbed Dose 2002
22.9.2 Dose Rate 2003
22.9.3 Dose Equivalent 2003
22.9.4 Radiation Weighting Factor 2003
22.9.5 Ionization 2004
22.10 Nuclear Reactions 2004
22.10.1 Probability and Nuclear Cross Section 2005
22.10.2 Two Bodies 2005
22.11 Nuclear Reactors 2006
22.11.1 Spontaneous and Induced Nuclear Fissions 2006
22.11.2 Total Energy Released from Induced Fission 2008
22.11.3 Nuclear Fuel Burn-up 2009
22.11.4 Fission Probability 2009
22.11.5 The Neutron Fission Factor 2011
22.11.6 Neutron Flux 2013
22.11.7 Fick’s Law and Neutron Diffusion Coefficient 2013
22.11.8 Continuity Equation 2013
22.11.9 Neutron Diffusion Equation 2014
22.11.10 Slowing Down or Moderation of Neutrons 2014
22.11.11 Fermi Age and Thermal Neutron Age 2015
22.11.12 Neutron Migration Length and Area 2015
22.11.13 The Neutron Cycle 2016
22.11.14 Neutron Buckling Factor 2018
22.11.15 Neutron Leakage and Critical Size 2018
22.11.16 Criticality 2018
22.12 Nuclear Fission Reactors 2019
22.13 Nuclear Fuels 2019
22.14 Moderator Materials 2021
22.14.1 Coolants or Heat Transfer Fluids 2022
22.15 Cladding Materials 2023
22.16 Control Materials 2023
22.17 Shielding Materials 2023
22.18 Properties of Nuclides 2026
22.19 Further Reading 2026
23 Materials Occupational Health and Safety 2059
23.1 Introduction 2060
23.2 Toxic and Poisonous Substances 2060
23.2.1 Threshold Limit Value and Recommended Exposure Limits 2060
23.3 Highly Flammable Liquids 2066
23.4 Ethers and Organic Peroxides 2068
23.5 Cryogenic Fluids 2068
23.5.1 Proper Construction Materials 2069
23.5.2 Contact Burns and Frostbite 2070
23.5.3 Asphyxiation 2070
23.6 Steam Burns 2070
23.7 Steam Explosion and Boiling Liquid Expanding Vapor Explosion (BLEVE) 2071
23.8 Molten Metals, Salts, and Slags 2071
23.9 Globally Harmonized System 2072
23.9.1 GHS Labeling of Chemicals 2072
23.9.2 GHS Classification for Dangerous Goods 2082
23.9.3 Risk and Safety Statements 2085
23.9.4 US Fire Code 2091
23.9.5 Former European Classification and Labeling 2091
23.9.6 Classes of Fires and Extinguishing Agents 2094
23.10 Further Reading 2095
Backmatter 2097
A Background Data for the Chemical Elements 2098
B Charts for Semimicrochemical Qualitative Identification of Metal Cations 2126
C NIST Thermochemical Data for Pure Substances 2131
D Hydrogen-like Atom Spectra 2138
E Crystal Field Theory (CFT) 2156
F Crystallography and Crystallochemistry 2171
G Transparent Materials for Optical Windows 2199
H Corrosion Resistance of Materials Toward Various Corrosive Media 2203
I Economic Data for Metals, Industrial Minerals, and Electricity 2215
J Astronomical Data 2232
K Materials Societies 2234
L Geological Time Scale 2247
Bibliography 2248
General Desk References 2248
Dictionaries and Encyclopedias 2251
Index 2259
Erscheint lt. Verlag | 9.7.2018 |
---|---|
Zusatzinfo | CXXXVIII, 2254 p. 175 illus., 25 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Technik ► Maschinenbau | |
Schlagworte | construction materials • Electrical Properties of Materials • materials characterization • Materials Used for Energy Production • Metal Properties and Descriptions • Physico-chemical Properties of Materials • Processing of Ceramics, Glasses and Refractories • Soil and Fertilizer Chemistry • Sources of Minerals • Superconductor Properties |
ISBN-10 | 3-319-38925-4 / 3319389254 |
ISBN-13 | 978-3-319-38925-7 / 9783319389257 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 29,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich