The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer
CRC Press (Verlag)
978-1-138-07783-6 (ISBN)
Compiling current research in this rapidly expanding field, Physiology of Bioelectricity in Development, Tissue Regeneration, and Cancer highlights relevant, cutting-edge topics poised to drive the next generation of medical breakthroughs. Chapters consider methods for detecting endogenous electric field gradients and studying applied electric fields in the lab. The book addresses bioelectricity’s roles in guiding cell behavior during morphogenesis and orchestrating higher order patterning. It also covers the response of stem cells to applied electric fields, which reveals bioelectricity as an exciting new player in tissue engineering and regenerative medicine.
This book provides an in-depth exploration of how electric signals control corneal wound repair and skin re-epithelialization, angiogenesis, and inflammation. It also delves into the bioelectric responses of cells derived from the musculoskeletal system, bioelectrical guidance of neurons, and the beneficial application of voltage gradients to promote regeneration in the spinal cord. It concludes with a discussion of bioelectricity and cancer progression and the potential for novel cancer biomarkers, new methods for early detection, and bioelectricity-based therapies to target both the tumor and metastatic cancer cells.
This multidisciplinary compilation will benefit biologists, biochemists, biomedical scientists, engineers, dermatologists, and clinicians, or anyone else interested in development, regeneration, cancer, and tissue engineering. It can also serve as an ideal textbook for students in biology, medicine, medical physiology, biophysics, and biomedical engineering.
Christine E. Pullar is a lecturer at the University of Leicester in the UK. She received her Ph.D. in immune cell signal transduction from the University of Sheffield, UK. The Wellcome Trust, the Medical Research Council, and the British Skin Foundation currently fund her lab. Her work has a strong translational flair, including projects that aim to promote healing in chronic wounds and reduce wound scarring, and she hold several patents in this area. She has delivered invited lectures at more than 20 international meetings and is active in mentoring young scientists within the research community.
Measuring Endogenous Electric Fields. Investigation Systems to Study the Biological Effects of Weak Physiological Electric Fields. Endogenous Bioelectric Signals as Morphogenetic Controls of Development, Regeneration, and Neoplasm. Stem Cell Physiological Responses to Noninvasive Electrical Stimulation. Electrical Signals Control Corneal Epithelial Cell Physiology and Wound Repair. Physiological Electric Fields Can Direct Keratinocyte Migration and Promote Healing in Chronic Wounds. Electrical Control of Angiogenesis. Inflammatory Cell Electrotaxis. Effects of DC Electric Fields on Migration of Cells of the Musculoskeletal System. Neuronal Growth Cone Guidance by Physiological DC Electric Fields. Can Applied Voltages Be Used to Produce Spinal Cord Regeneration and Recovery in Humans? Bioelectricty of Cancer: Voltage-Gated Ion Channels and Direct-Current Electric Fields.
Erscheinungsdatum | 08.05.2018 |
---|---|
Reihe/Serie | Biological Effects of Electromagnetics |
Zusatzinfo | 2 Tables, black and white; 70 Illustrations, black and white |
Verlagsort | London |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 453 g |
Themenwelt | Medizin / Pharmazie ► Pharmazie |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Naturwissenschaften ► Biologie ► Zellbiologie | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Medizintechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-138-07783-6 / 1138077836 |
ISBN-13 | 978-1-138-07783-6 / 9781138077836 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich