Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Financing High-Tech Startups (eBook)

Using Productive Signaling to Efficiently Overcome the Liability of Complexity
eBook Download: PDF
2018 | 1st ed. 2018
XIX, 206 Seiten
Springer International Publishing (Verlag)
978-3-319-66155-1 (ISBN)

Lese- und Medienproben

Financing High-Tech Startups - Robin P. G. Tech
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book examines the adverse effects of complexity, information asymmetries, transaction costs, and uncertainty on investors' decision making. It suggests mitigating those effects using appropriate and matching signals, and analyzes a sample of 903 German startups to quantitatively highlight the distinct financing patterns and characteristics of high-tech startups. It then investigates the reasons for these patterns on the basis of a qualitative study that includes 34 interviews with investors and entrepreneurs in the US and Germany and an international expert panel. Lastly, it presents a framework that matches complexity factors with appropriate productive signals. 




Robin P. G. Tech is a researcher at the Humboldt Institute for Internet and Society in Berlin. He is the principal investigator of a research group that focuses on the entrepreneurial exploitation of the 'internet of things'. Prior to this, Robin studied Economics and Corporate Management at Zeppelin University (BA),Technology, Sociology, & Management (MSc) in Stockholm, and completed his MBA in Hong Kong. In his non-academic life, Robin is the co-founder of AtomLeap, a high-tech focused startup. He also worked in venture capital (2007), held a consulting position at the curating office Buro17 in Moscow (2009), worked for AUDI on inductive charging systems (2010-2011) and at the European Commission's EIT Labs (2012-2013) in the field of business modeling for renewable energies. 

Robin P. G. Tech is a researcher at the Humboldt Institute for Internet and Society in Berlin. He is the principal investigator of a research group that focuses on the entrepreneurial exploitation of the ‘internet of things’. Prior to this, Robin studied Economics and Corporate Management at Zeppelin University (BA),Technology, Sociology, & Management (MSc) in Stockholm, and completed his MBA in Hong Kong. In his non-academic life, Robin is the co-founder of AtomLeap, a high-tech focused startup. He also worked in venture capital (2007), held a consulting position at the curating office Buro17 in Moscow (2009), worked for AUDI on inductive charging systems (2010-2011) and at the European Commission’s EIT Labs (2012-2013) in the field of business modeling for renewable energies. 

Dedication 5
Foreword 6
Acknowledgment 7
Contents 8
List of Abbreviations 11
List of Figures 12
List of Tables 14
Chapter 1: Introduction: High-Tech Startup Financing 15
1.1 Analyzing High-Tech Startup Financing 15
1.2 Startups and Entrepreneurs 20
1.3 Investors 30
1.4 Chapter Summary: Contextualizing High-Tech Startup Financing 35
Literature 36
Chapter 2: Theory: The Liability of Complexity 43
2.1 Complexity Lies at the Heart of High-Tech Startups 43
2.2 New Institutional Economics as a Venture Funding Framework 47
2.2.1 Transaction Costs Are Complexities in Disguise 52
2.2.2 Signals Mark Distinction 55
2.2.3 Agency and Property Rights Theory 64
2.3 Behavioral Economics and Finance 70
2.4 An Institutional and Behavioral Research Strategy 77
2.5 Excursus: Similar Approaches in Digital and Media Economics 79
2.6 High-Tech Startups Face an Institutional and Behavioral Dilemma 80
2.7 Chapter Summary: Theorizing Complexity and Signaling 82
Literature 83
Chapter 3: Methodology: Mixed Methods Approach 92
3.1 Background 92
3.2 Methodology 95
3.3 Mixed Methods Application 96
3.4 Chapter Summary: Pragmatist and Explanatory Sequence 98
Literature 99
Chapter 4: Study I: Survey of German Startups 101
4.1 Hypotheses 101
4.2 Data Sources and Sample Selection 102
4.3 Data Analysis 103
4.4 Findings 104
4.5 Chapter Summary: High-Tech Startup Financing Patterns 108
Literature 109
Chapter 5: Study II: Interviews with Entrepreneurs and Investors 110
5.1 Research Questions 110
5.2 Data Collection 111
5.3 Data Analysis 114
5.4 Findings 117
5.4.1 Internal Complexity 118
5.4.2 Product-Related Complexity 123
5.4.3 External Complexity 127
5.4.4 Investor Classes 136
5.4.5 Validation Panel 142
5.5 Chapter Summary: Complexity-Induced Uncertainty and Signals 143
Literature 144
Chapter 6: Framework: Matching Signals with Complexities of High-Tech Startups 145
6.1 Complexity Factor Framework 146
6.2 Startups´ Locus of Control 148
6.2.1 Internal Locus of Control 148
6.2.2 Intermediate Locus of Control 151
6.2.3 External Locus of Control 163
6.3 Investor Specificities 166
6.3.1 Differences Between the US and Germany 166
6.3.2 Investor Risk Profiles 167
6.4 Chapter Summary: The Complexity Signal Framework 172
Literature 175
Chapter 7: Discussion: Why Signals Can Help to Overcome the Liability of Complexity 179
7.1 Theoretical Implications 179
7.1.1 Behavioral Economics 179
7.1.2 Agency and Property Rights Theory 181
7.1.3 Signaling 185
7.1.4 Transaction Cost Theory 189
7.1.5 High-Tech Complexity 191
7.2 Practical Implications 192
7.2.1 Investors 192
7.2.2 Startups and Entrepreneurs 194
7.3 Limitations and Future Research 198
7.3.1 Limitations 198
7.3.2 Future Research 199
7.4 Chapter Summary: Taking Stock and Looking Ahead 203
Literature 204
Chapter 8: Conclusion: Taming Complexity 209
Chapter 9: Appendix 211
9.1 Investor Interviews Guide 211
9.2 Startup Interviews Guide 212
9.3 Themes from Interviews 214

Erscheint lt. Verlag 2.3.2018
Zusatzinfo XIX, 206 p.
Verlagsort Cham
Sprache englisch
Themenwelt Technik
Wirtschaft Betriebswirtschaft / Management Finanzierung
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Early Stage • investors • Liability of Complexity • Mixed Methods • Productive Signaling • Transactions Costs • Venture Capital
ISBN-10 3-319-66155-8 / 3319661558
ISBN-13 978-3-319-66155-1 / 9783319661551
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen, Beispiele, Übungsaufgaben mit Musterlösungen

von Alexander Burger

eBook Download (2024)
Vahlen (Verlag)
CHF 19,50